Quantum Non-Demolition Readout and Coupling Studies of Superconducting Qubits
超导量子位的量子非破坏读出和耦合研究
基本信息
- 批准号:EP/D001048/1
- 负责人:
- 金额:$ 115.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The laws of quantum mechanics are the most fundamental laws of physics that we know of. They have been stringently tested in a variety of situations. Even so, there are still basic unanswered questions concerning our understanding and interpretation of some of the results. Despite this, it is very important to make practical use of what we already know about quantum mechanics. In this sense, quantum physics is both a fundamental science and new engineering. It seems a certainty that in the forthcoming century we will progress in our understanding and technical mastery of quantum effects as quickly as we have done with electricity in the last. Our research proposal is based on one of the most exciting recent results. In 1999 Japanese researchers, building on other work, showed that it is possible to make an electrical circuit that obeys the laws of quantum physics. Normally objects that obey quantum mechanics are 'natural' single particles such as electrons and photons, never before have we had the opportunity to study or exploit an artificial quantum circuit. Presently such circuits are made from Aluminium, they operate at very low temperatures, below 100mK where the Aluminium is superconducting and at very high frequencies, typically 10 GHz. It is now possible to observe the discrete (quantised) changes in energy, to manipulate the circuit at will into its different quantum states, and to perform all the basic atomic physics experiments on these man made electrical circuits. Five research groups in the world have so far been able to reproduce and improve on the early results using different designs of circuits and with varying degrees of success. However, it is now clear that none of these five experiments operate perfectly. It has proven difficult to measure reliably the quantum state of the circuit for reasons that are not yet fully understood, this is known as the readout problem. In addition the circuits are not completely stable in the sense that microscopic changes in the environment around them interfere with their operation, an effect known as environmental decoherence. Our research is dedicated to solving these problems. We plan to take the best available readout technology, a quantised photon cavity resonator developed at Yale University in the USA and use it on the best available quantum circuit, the quantronium circuit developed at the CEA-Saclay, France. The fastest way to establish a serious independent research effort in the UK is to collaborate with one of the best current research groups. With this in mind, the proposer of this research has spent the past year working with the CEA-Saclay group. Now we will initiate a new research effort at Royal Holloway, University of London, already well known for its contributions to quantum computing. The collaboration with the CEA-Saclay will continue and there will be distinct but complementary research programmes.The research programme is dedicated to understanding and eliminating the problems referred to above and to building better circuits. Quantum circuits offer a very promising route to building a quantum computer and superconducting qubits are presently the best available solid state qubits. We wish to produce a device that couples two qubits together, this is the necessary next step in the production of a quantum computer. Such a device would also allow us to make systematic studies of quantum entanglement, perhaps the least well understood area of quantum mechanics. We also plan to explore how it is that quantum mechanics makes the transition to classical mechanics. It is thought that this proceeds through the process of environmental decoherence, which is precisely the effect to which a quantum circuit is most vulnerable, hence presenting a unique opportunity to study this problem in a very direct way.
量子力学定律是我们所知道的最基本的物理定律。它们在各种情况下都经过了严格的考验。即便如此,关于我们对一些结果的理解和解释,仍然有一些基本的问题没有得到回答。尽管如此,实际应用我们已经知道的量子力学是非常重要的。从这个意义上说,量子物理学既是一门基础科学,也是一门新的工程。似乎可以肯定的是,在即将到来的世纪,我们在量子效应的理解和技术掌握方面的进步,将像上一个世纪我们在电学方面所做的那样快。我们的研究计划是基于最近最令人兴奋的结果之一。1999年,日本研究人员在其他工作的基础上,表明有可能制造出遵守量子物理定律的电路。通常情况下,服从量子力学的物体是“自然”的单个粒子,如电子和光子,我们以前从未有机会研究或利用人工量子电路。目前,这种电路由铝制成,它们在非常低的温度下工作,低于100 mK,其中铝是超导的,并且在非常高的频率下工作,通常为10 GHz。现在可以观察能量的离散(量子化)变化,随意操纵电路进入不同的量子态,并在这些人造电路上进行所有基本的原子物理实验。到目前为止,世界上有五个研究小组能够使用不同的电路设计复制和改进早期的结果,并取得了不同程度的成功。然而,现在很清楚,这五个实验都没有完美的运作。已经证明,由于尚未完全理解的原因,很难可靠地测量电路的量子态,这被称为读出问题。此外,这些电路并不完全稳定,因为它们周围环境的微观变化会干扰它们的运行,这种效应称为环境退相干。我们的研究致力于解决这些问题。我们计划采用最好的读出技术,即美国耶鲁大学开发的量子光子谐振腔,并将其用于最好的量子电路,即法国CEA-Saclay开发的量子电路。在英国建立一个严肃的独立研究工作的最快方法是与当前最好的研究小组之一合作。考虑到这一点,这项研究的提议者在过去的一年里一直与CEA-Saclay小组合作。现在,我们将在伦敦大学的皇家霍洛威学院发起一项新的研究工作,该学院已经因其对量子计算的贡献而闻名。与CEA-Saclay的合作将继续下去,并将有不同但互补的研究方案,研究方案致力于了解和消除上述问题,并建立更好的电路。量子电路为构建量子计算机提供了一条非常有前途的途径,超导量子比特是目前最好的固态量子比特。我们希望生产一种将两个量子比特耦合在一起的设备,这是生产量子计算机的必要下一步。这样的设备也将使我们能够对量子纠缠进行系统的研究,这可能是量子力学中最不为人所知的领域。我们还计划探索量子力学如何过渡到经典力学。人们认为这是通过环境退相干过程进行的,这正是量子电路最容易受到的影响,因此提供了一个以非常直接的方式研究这个问题的独特机会。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermally excited tunneling from a metastable electronic state in a single-Cooper-pair transistor
单库珀对晶体管中亚稳态电子态的热激发隧道效应
- DOI:10.1063/1.3012374
- 发表时间:2008
- 期刊:
- 影响因子:4
- 作者:Rees D
- 通讯作者:Rees D
Direct spectrum analysis using a threshold detector with application to a superconducting circuit
- DOI:10.1088/1367-2630/16/5/055010
- 发表时间:2014-05-14
- 期刊:
- 影响因子:3.3
- 作者:Ithier, G.;Tancredi, G.;Meeson, P. J.
- 通讯作者:Meeson, P. J.
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
二维金属磁量子振荡中的自旋零异常
- DOI:10.1088/1367-2630/10/8/083032
- 发表时间:2008
- 期刊:
- 影响因子:3.3
- 作者:Wosnitza J
- 通讯作者:Wosnitza J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phil Meeson其他文献
Phil Meeson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phil Meeson', 18)}}的其他基金
Quantum Sensing for the Hidden Sector (QSHS)
隐藏领域的量子传感 (QSHS)
- 批准号:
ST/T006242/1 - 财政年份:2021
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
"in vivo" Modification of Superconducting Quantum Electronic Circuits
超导量子电子电路的“体内”改造
- 批准号:
EP/R025487/1 - 财政年份:2018
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
On-Chip milliKelvin Electronic Refrigerator for Astronomical and Quantum Device Applications
适用于天文和量子设备应用的片上毫开尔文电子制冷机
- 批准号:
EP/F041128/1 - 财政年份:2008
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 115.89万 - 项目类别:
Studentship
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Care on the move: active travel and the everyday mobilities of children with non-visible disabilities
移动护理:非明显残疾儿童的积极旅行和日常活动
- 批准号:
ES/X010880/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
- 批准号:
MR/X008827/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
- 批准号:
EP/Y003144/1 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Research Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335761 - 财政年份:2024
- 资助金额:
$ 115.89万 - 项目类别:
Standard Grant














{{item.name}}会员




