"in vivo" Modification of Superconducting Quantum Electronic Circuits

超导量子电子电路的“体内”改造

基本信息

  • 批准号:
    EP/R025487/1
  • 负责人:
  • 金额:
    $ 281.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The award funds a unique cryogenic nanofabrication tool with superior imaging capability and the possibility to modify quantum circuitry "in vivo". Based on the Zeiss ORION Nanaofabrication tool combined with innovative cryogenics in the few-Kelvin regime, the tool enables superconducting quantum circuitry to be modified in-situ with a focussed ion beam of Neon, allowing precision tailoring of component values and testing with radio frequency and DC probes in the superconducting state without the need to break vacuum. Such a prospect hugely enhances the potential for rapid development of prototype quantum devices and the quality with which they are selected for further testing, for example for further testing at milliKelvin temperatures or for commercial use. The imaging capabilities of the He-ion microscope will in addition support the recently funded world-class electron-beam-lithography system, the integrated tool being able to image and modify features of size less than 5 nm with 0.1 nm resolution while in the superconducting state.Superconducting Quantum Technology is regarded worldwide as one of the key underpinning technologies for the construction of a quantum computer and for novel sensing and metrology applications.Based on fabrication techniques used in semi-conductor processing, the creation of electrical circuits that operate according to the laws of quantum physics is astonishing in that the devices are the first man made objects (as opposed to natural entities such as atoms, electrons and photons) to display quantum effects. They are all the more fantastic because of their ability to be modified by design or construction in ways that naturally quantum objects cannot. As quantum electrical (qubit) circuits, they hold the potential to solve all of the problems of addressability, controllability, controlled qubit coupling and readout that many other architectures based on natural quantum objects find difficult. Major corporations such as Google, IBM and Raytheon are now investing in this field. The exploration and exploitation of a new generation of Superconducting Quantum Circuits including quantum meta-materials, coherent quantum phase slip (with consequent potential for a redefinition of the unit of electrical current, the Ampere), microwave quantum optics and quantum limited amplification as well as further development of multi-qubit devices are also key objectives of our research.The new tool will be installed in the new nanofabrication facility at Royal Holloway, part of a UK Centre for Superconducting and hybrid Quantum Systems collaboration. We will build on our strong collaborations with the National Physical Laboratory and Lancaster University in a consortium that can offer Superconducting Quantum Circuit nanofabrication facilities to UK academics the field free of access charges. We were the first group in the UK to successfully establish a superconducting qubit foundry and we will build on our state-of-the-art capability with the aim of providing a streamlined route from science to technology. The new facility opens in summer 2018 and is also strongly involved in providing commercial superconducting device nanofabrication services. Our overall aim is to establish the UK as a world leader in superconducting quantum technology.
该奖项资助了一种独特的低温纳米纤维工具,具有上级成像能力和修改“体内”量子电路的可能性。该工具基于蔡司ORION Nanaofabetron工具,结合几开尔文状态下的创新低温技术,能够使用聚焦氖离子束原位修改超导量子电路,从而实现组件值的精确定制,并在超导状态下使用射频和直流探头进行测试,而无需破坏真空。这样的前景极大地提高了原型量子器件的快速开发的潜力以及它们被选择用于进一步测试的质量,例如用于在毫开尔文温度下的进一步测试或用于商业用途。氦离子显微镜的成像能力还将支持最近资助的世界级电子束光刻系统,该集成工具能够在超导状态下以0.1纳米的分辨率对尺寸小于5纳米的特征进行成像和修改。超导量子技术在全球范围内被视为构建量子计算机和新型传感器的关键基础技术之一。和计量应用。基于半导体加工中使用的制造技术,根据量子物理定律运行的电路的创建令人惊讶,因为这些设备是第一个显示量子效应的人造物体(与原子、电子和光子等自然实体相反)。它们之所以更加奇妙,是因为它们能够以自然量子物体所不能的方式通过设计或构造进行修改。作为量子电子(量子位)电路,它们有可能解决所有基于自然量子对象的许多其他架构难以解决的可寻址性,可控性,受控量子位耦合和读出问题。谷歌、IBM和雷神等大公司现在都在这一领域投资。新一代超导量子电路的探索和开发,包括量子超材料、相干量子相位滑移(因此有可能重新定义电流单位安培),微波量子光学和量子限幅放大以及多光子晶体的进一步发展,量子比特设备也是我们研究的关键目标。新工具将安装在皇家霍洛威的新纳米纤维工厂,英国超导和混合量子系统合作中心的一部分。我们将建立在我们与国家物理实验室和兰开斯特大学在一个财团,可以提供超导量子电路nanofabetics设施,以英国学者免费访问费领域的强有力的合作。我们是英国第一个成功建立超导量子比特铸造厂的集团,我们将以我们最先进的能力为基础,提供从科学到技术的简化路线。新工厂将于2018年夏季开业,并将积极参与提供商业超导设备纳米制造服务。我们的总体目标是使英国成为超导量子技术的世界领导者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancement of Superconductivity by Amorphizing Molybdenum Silicide Films Using a Focused Ion Beam
使用聚焦离子束非晶化硅化钼薄膜增强超导性
  • DOI:
    10.3390/nano10050950
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Mykkänen E
  • 通讯作者:
    Mykkänen E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phil Meeson其他文献

Phil Meeson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Phil Meeson', 18)}}的其他基金

Quantum Sensing for the Hidden Sector (QSHS)
隐藏领域的量子传感 (QSHS)
  • 批准号:
    ST/T006242/1
  • 财政年份:
    2021
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Research Grant
On-Chip milliKelvin Electronic Refrigerator for Astronomical and Quantum Device Applications
适用于天文和量子设备应用的片上毫开尔文电子制冷机
  • 批准号:
    EP/F041128/1
  • 财政年份:
    2008
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Research Grant
Quantum Non-Demolition Readout and Coupling Studies of Superconducting Qubits
超导量子位的量子非破坏读出和耦合研究
  • 批准号:
    EP/D001048/1
  • 财政年份:
    2006
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Research Grant

相似海外基金

The Effect and Molecular Mechanisms of HIV-induced Host RNA Modification
HIV诱导宿主RNA修饰的作用及分子机制
  • 批准号:
    24K18453
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
  • 批准号:
    2330970
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Standard Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
  • 批准号:
    23K28429
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GLYCOprotein N-glycosylation from non-life to eukaryotes: a Doctoral Network to expand the knowledge on a ubiquitous posttranslational modification
从非生命到真核生物的糖蛋白 N-糖基化:扩展普遍存在的翻译后修饰知识的博士网络
  • 批准号:
    EP/Y032527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Research Grant
Investigations into aryl nitriles for protein modification via an untapped mode of reactivity
通过未开发的反应模式研究芳基腈用于蛋白质修饰
  • 批准号:
    EP/X037819/1
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Research Grant
Coupling transmission of heat-gas-moisture in accelerating carbonation for modification of recycled aggregates and CO2 sequestration
热-气-湿耦合传输加速再生骨料碳化改性和 CO2 封存
  • 批准号:
    24K17330
  • 财政年份:
    2024
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of innovative wind resistant design method for high-rise buildings with corner modification using online aerodynamic database
利用在线空气动力数据库开发转角改造高层建筑创新抗风设计方法
  • 批准号:
    23H01496
  • 财政年份:
    2023
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surface modification of ceramic phosphor using hydrophobic interaction and effect on emission efficiency
利用疏水相互作用对陶瓷荧光粉进行表面改性及其对发射效率的影响
  • 批准号:
    23K04406
  • 财政年份:
    2023
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Development of Surface Modification Process for Semitransparent Photoelectrodes toward Durable Tandem Water Splitting Cell
半透明光电极表面改性工艺的发展以实现耐用的串联水分解电池
  • 批准号:
    23K04917
  • 财政年份:
    2023
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chimeric molecules for precision protein modification
用于精确蛋白质修饰的嵌合分子
  • 批准号:
    DE230101236
  • 财政年份:
    2023
  • 资助金额:
    $ 281.19万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了