Statistically rigorous age progression for the identification of missing persons

用于识别失踪人员的统计上严格的年龄进展

基本信息

  • 批准号:
    EP/D040973/1
  • 负责人:
  • 金额:
    $ 24.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

People involved in trying to find missing persons have to depend upon images of them taken before they disappeared. For missing adults, this is not too great a problem, as their appearance will not have changed radically. However, children may have changed out of all recognition. The aim of this project is to develop a way of 'ageing' a facial image to give a realistic impression of what the missing child will look like now. If successful, the system will be a major boost to the work of those locating missing children: it will provide accurate images rapidly and simply at a fraction of the current cost.The project will develop algorithms, or step-by-step problem-solving procedures, that can be used to age a facial image. These will be based on studies of facial variation in children over two critical stages in their development which will be undertaken at Dundee University, and from existing face data archives held at the University of Kent. The project will benefit from having very close interaction and guidance from the National Missing Persons Helpline (NMPH) and VisionMetric, a company that has a good deal of commercial experience in developing forensic imaging applications.The final outcome of the project will be a software system that can be used on standard hardware and over the Internet. To get to this stage, however, there will be a series of project stages:Compiling and annotating a photographic database of children's faces spanning two main developmental phases (at Dundee)Developing a comprehensive statistical model of facial appearance (at Kent)Developing person-specific age transformation techniques (at Dundee and Kent)Developing these techniques to make them quick and user-friendly, so that they can be used for practical or commercial development (at Kent)Practical implementation of the software system (at Kent, involving VisionMetric, NMPH and the Metropolitan Police)
参与寻找失踪人员的人不得不依靠他们失踪前拍摄的照片。对于失踪的成年人来说,这不是一个太大的问题,因为他们的外表不会发生根本的变化。然而,孩子们可能已经变得认不出来了。这个项目的目的是开发一种“老化”面部图像的方法,以给人一个失踪儿童现在看起来的真实印象。如果成功的话,该系统将大大推动寻找失踪儿童的工作:它将以目前成本的一小部分快速简单地提供准确的图像。该项目将开发算法,或逐步解决问题的程序,可用于确定面部图像的年龄。这些研究将基于邓迪大学对儿童在两个关键发展阶段的面部变化的研究,以及肯特大学现有的面部数据档案。该项目将得益于全国失踪人员求助热线和VisionMetric公司的密切互动和指导,该公司在开发法医成像应用方面具有丰富的商业经验,该项目的最终成果将是一个可在标准硬件和互联网上使用的软件系统。然而,要达到这一阶段,将有一系列的项目阶段:编辑和注释儿童面部的照片数据库,跨越两个主要的发展阶段(在邓迪)开发一个全面的面部外观统计模型(在肯特)开发个人特定的年龄转换技术(在邓迪和肯特)开发这些技术,使它们快速和用户友好,以便它们可以用于实际或商业开发(在肯特)实际实施软件系统(在肯特,涉及VisionMetric,NMPH和大都会警察局)

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New methodology in facial composite construction: from theory to practice
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Solomon其他文献

Macroinvertebrate abundance is lower in temperate reservoirs with higher winter drawdown
  • DOI:
    10.1007/s10750-019-3922-y
  • 发表时间:
    2019-03-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Gabrielle Trottier;Holly Embke;Katrine Turgeon;Christopher Solomon;Christian Nozais;Irene Gregory-Eaves
  • 通讯作者:
    Irene Gregory-Eaves

Christopher Solomon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Solomon', 18)}}的其他基金

Collaborative research: Regulation of lake productivity by terrestrial dissolved organic matter
合作研究:陆地溶解有机物对湖泊生产力的调节
  • 批准号:
    1754363
  • 财政年份:
    2018
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Continuing Grant
CNH-L: Social-Ecological Dynamics of Recreational Fishery Landscapes
CNH-L:休闲渔业景观的社会生态动力学
  • 批准号:
    1716066
  • 财政年份:
    2017
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant

相似海外基金

Rigorous Privacy Compliance in Modern Application Ecosystems
现代应用生态系统中严格的隐私合规性
  • 批准号:
    DP240103068
  • 财政年份:
    2024
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Discovery Projects
Scaling MENTORS in CS (Matching Experienced and Novice Teachers for Ongoing Rigorous Support in Computer Science)
扩展计算机科学领域的导师(匹配经验丰富的教师和新手教师,为计算机科学领域提供持续的严格支持)
  • 批准号:
    2318232
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
  • 批准号:
    10679252
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
  • 批准号:
    10721722
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
RFA-CE-23-006 - Rigorous examination of anonymous reporting system data to prevent youth suicide and firearm violence: an applied natural language approach
RFA-CE-23-006 - 严格检查匿名报告系统数据以防止青少年自杀和枪支暴力:应用自然语言方法
  • 批准号:
    10786629
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
Elucidation of auditory machanism based on rigorous solution of the cochlear fluid mechanics model and its application to auditory medicine
基于耳蜗流体力学模型严密求解的听觉机制阐明及其在听觉医学中的应用
  • 批准号:
    23H03772
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rigorous Evaluation of Strategies to Prevent Overdose through Linking People with Illicit Substance Use Disorders to Recovery Support Services - 2022
通过将非法药物使用障碍患者与康复支持服务联系起来来预防用药过量的策略的严格评估 - 2022
  • 批准号:
    10817314
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
  • 批准号:
    10635323
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
Developing user-centric training in rigorous research: post-selection inference, publication bias, and critical evaluation of statistical claims.
在严谨的研究中开展以用户为中心的培训:选择后推断、发表偏见和统计声明的批判性评估。
  • 批准号:
    10721491
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了