New frontiers in the mathematics of solids

固体数学的新领域

基本信息

  • 批准号:
    EP/D048400/1
  • 负责人:
  • 金额:
    $ 153.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Solid mechanics is the study of how solids deform under the action of applied forces or displacements, changes of temperature and other factors. The central model is that of elasticity theory, in which the stress (the force per unit area acting across internal surfaces in the material) is a prescribed function of the strain, while various modifications to this theory enable other effects, such as plastic flow and damage, to be described.The governing equations of solid mechanics are highly nonlinear systems of partial differential equations, the mathematical properties of which, such as when solutions exist and how they depend on important parameters, are poorly understood.The aim of the proposal is to conduct a broadly based programme of research on the mathematics of solid mechanics and computation of solutions, concentrating on three important areas of applications.The first area concerns the formation of patterns of microstructure in alloys, arising from phase transformations in which the underlying crystal lattice undergoes a change of shape (for example, from cubic to tetragonal) at a critical temperature. These patterns are of importance for determining the everyday properties of the material. Our research will attempt for the first time to describe mathematically how these patterns form.The second area is fracture mechanics, which is the study of when and how materials crack and break. This is a large scientific field of great technological importance. Our research will focus on potentially exciting new mathematical models of fracture, which do not make guesses as to the position and form of new fracture surfaces, and which allow effective numerical computation of these surfaces.The third area concerns applications of solid mechanics to medicine. Mechanics is becoming increasingly important for the understanding of many parts of the human body. We will study models of how bone and tissue grow, with applications to tumours and in particular colon cancer, and how the detection of breast tumours can be aided by observing changes in the elastic properties of the breast.This programme will involve close collaboration with experimentalists, microscopists and medical researchers, but at the same time it will draw on and attempt to deepen our mathematical understanding of the underlying equations, which are common to all the applications. It will involve combining skills in modelling (for example, how the models are related to atomic or cellular interactions), in mathematical analysis of the equations, in devising effective computational algorithms, and in interacting with those wanting to use the results (engineers, materials scientists, and doctors).
固体力学是研究固体在外力或位移、温度变化和其他因素的作用下如何变形的学科。中心模型是弹性理论,其中应力(作用在材料内表面上的每单位面积的力)是应变的规定函数,而对该理论的各种修改使得能够描述其他效应,例如塑性流动和损伤。固体力学的控制方程是高度非线性的偏微分方程组,其数学性质,例如,当溶液存在时,以及它们如何依赖于重要的参数,人们知之甚少。该建议的目的是在固体力学的数学和溶液的计算方面进行一项基础广泛的研究计划,集中在三个重要的应用领域。第一个领域涉及合金中微观结构图案的形成,由相变引起的,其中下面的晶格在临界温度下经历形状的变化(例如,从立方到四方)。这些图案对于确定材料的日常性质非常重要。我们的研究将第一次尝试用数学的方法来描述这些图案是如何形成的。第二个领域是断裂力学,它研究材料何时以及如何破裂和断裂。这是一个具有重大技术意义的大科学领域。我们的研究将集中在潜在的令人兴奋的新的数学模型的骨折,不作出猜测的位置和形式的新的骨折表面,并允许有效的数值计算这些表面。第三个领域涉及固体力学在医学上的应用。力学对于理解人体的许多部分变得越来越重要。我们将研究骨骼和组织如何生长的模型,并将其应用于肿瘤,特别是结肠癌,以及如何通过观察乳房弹性特性的变化来帮助检测乳房肿瘤。该计划将涉及与实验学家,显微镜学家和医学研究人员的密切合作,但同时它将借鉴并试图加深我们对基本方程的数学理解,这对于所有应用是共同的。它将涉及结合建模技能(例如,模型如何与原子或细胞相互作用相关),方程的数学分析,设计有效的计算算法,以及与那些想要使用结果的人(工程师,材料科学家和医生)互动。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homogenization of a Row of Dislocation Dipoles from Discrete Dislocation Dynamics
  • DOI:
    10.1137/15m1017910
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chapman;Y. Xiang;Yichao Zhu
  • 通讯作者:
    S. Chapman;Y. Xiang;Yichao Zhu
Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
  • DOI:
    10.1093/imanum/drm017
  • 发表时间:
    2007-09
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    S. Berrone;E. Süli
  • 通讯作者:
    S. Berrone;E. Süli
Quasistatic Nonlinear Viscoelasticity and Gradient Flows
准静态非线性粘弹性和梯度流
Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity
Incompatible Sets of Gradients and Metastability
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Ball其他文献

Not just a pretty equation
  • DOI:
    10.1016/s0262-4079(06)61210-4
  • 发表时间:
    2006-11-25
  • 期刊:
  • 影响因子:
  • 作者:
    John Ball
  • 通讯作者:
    John Ball
Computer-assisted instruction for dispersed populations: System cost models
  • DOI:
    10.1007/bf00054978
  • 发表时间:
    1973-02-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    John Ball;Dean Jamison
  • 通讯作者:
    Dean Jamison
Grammatikövningar i tyska och engelska - utformning i förhållande till styrdokument och forskning
Grammatikövningar i tyska och engelska - utformning i förhållandetil styrdokument och forskning
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Andersson;John Ball
  • 通讯作者:
    John Ball
A method for examining the impact of interoperability on mission performance in a system-of-systems
一种检查系统系统中互操作性对任务性能影响的方法
  • DOI:
    10.1109/aero.2010.5446884
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burak Bagdatli;K. Griendling;David Kalpakchian;Elizabeth Jones;Sabrina Ussery;John Ball;J. Kallman;D. Mavris
  • 通讯作者:
    D. Mavris
Zur Beschleunigung der Gasentwicklung bei der Darstellung von Wasserstoff

John Ball的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Ball', 18)}}的其他基金

Mathematical theory of polycrystalline materials
多晶材料数学理论
  • 批准号:
    EP/V00204X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Research Grant
Science at the Triple Point between Mathematics, Mechanics and Materials Science
数学、力学和材料科学之间的三重点科学
  • 批准号:
    EP/J014494/1
  • 财政年份:
    2012
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Research Grant
Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析
  • 批准号:
    EP/E035027/1
  • 财政年份:
    2007
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Research Grant
Equilibrium Liquid Crystal Configurations: Energetics, Singularities and Applications
平衡液晶构型:能量学、奇点和应用
  • 批准号:
    EP/E010288/1
  • 财政年份:
    2006
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Research Grant
Studies of the Mesoscale Organization and Microphysical Structure of Monsoon Clouds and Precipitation
季风云和降水的中尺度组织和微物理结构研究
  • 批准号:
    8102976
  • 财政年份:
    1981
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Continuing Grant
Very Long Baseline Interferometry at the Harvard Radio Astronomy Station
哈佛射电天文台的甚长基线干涉测量
  • 批准号:
    8012712
  • 财政年份:
    1980
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New frontiers in reverse mathematics with the multidimensional perspective
多维视角逆向数学新领域
  • 批准号:
    23K03193
  • 财政年份:
    2023
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics (FACM-2022): New Perspectives in Mathematical Biology
应用与计算数学前沿会议(FACM-2022):数学生物学的新视角
  • 批准号:
    2154556
  • 财政年份:
    2022
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics
应用与计算数学前沿会议
  • 批准号:
    1903321
  • 财政年份:
    2019
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics
应用与计算数学前沿会议
  • 批准号:
    1614145
  • 财政年份:
    2016
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
Supercomputing: Rutgers' Catalyst for Discovery at the Frontiers of Medicine
超级计算:罗格斯大学医学前沿发现的催化剂
  • 批准号:
    8734820
  • 财政年份:
    2015
  • 资助金额:
    $ 153.15万
  • 项目类别:
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
  • 批准号:
    1517152
  • 财政年份:
    2015
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
WESTPA: A high-performance framework for simulating at the frontiers of biology
WESTPA:用于模拟生物学前沿的高性能框架
  • 批准号:
    10734236
  • 财政年份:
    2015
  • 资助金额:
    $ 153.15万
  • 项目类别:
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
  • 批准号:
    1444295
  • 财政年份:
    2014
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2011-2013
应用和计算数学前沿会议:2011-2013
  • 批准号:
    1108674
  • 财政年份:
    2011
  • 资助金额:
    $ 153.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了