Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017

应用与计算数学前沿会议:2015-2017

基本信息

  • 批准号:
    1517152
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

This grant supports the participation of undergraduate and graduate students, postdoctoral fellows, junior faculty, and other researchers in a conference on "Frontiers in Applied and Computational Mathematics" (FACM) at the New Jersey Institute of Technology (NJIT) on June 5-6, 2015. FACM 2015 is focused on mathematical fluid dynamics and applications in biomedicine and climate science. There will be dedicated minisymposia on biofluid dynamics, the connection between mathematical modeling and experiment, geophysical fluid dynamics, wave propagation in fluids, and computational methods, including high-performance computing and multiscale methods. In addition, there will be five minisymposia on the application of statistics and data analysis to biomedicine and to atmosphere/ocean science, which are areas of great current interest. This conference series brings together mathematicians, statisticians, scientists and engineers in an environment where significant interaction and cross-fertilization takes place. More information can be found on the conference website http://m.njit.edu/Events/FACM15/. The FACM conference series has been organized over the past eleven years by the Department of Mathematical Sciences and Center for Applied Mathematics and Statistics at NJIT. The annual meeting is a forum for the dissemination of research in applied and computational mathematics and statistics. FACM conferences are more intimate and student centered than large society meetings, and a goal of the organizers is to introduce future leaders of applied mathematics to established investigators and emerging research areas. Participation among graduate students and postdocs is greatly enhanced with contributed talks through which they give presentations in minisymposia alongside leading scientists. For students and postdocs, this will be a learning and networking experience that will help them with their research and career paths. Special efforts will be made to continue the participation underrepresented groups in the conference.
这笔资金支持本科生和研究生、博士后研究员、初级教职员工和其他研究人员参加2015年6月5-6日在新泽西理工学院(NJIT)举行的“应用和计算数学前沿”(FACM)会议。FACM 2015的重点是数学流体动力学以及在生物医学和气候科学中的应用。会议将专门讨论生物流体动力学、数学建模和实验之间的联系、地球物理流体动力学、波在流体中的传播以及计算方法,包括高性能计算和多尺度方法。此外,还将举办五个关于将统计和数据分析应用于生物医学和大气/海洋科学的小型研讨会,这两个领域是目前非常感兴趣的领域。这一系列会议将数学家、统计学家、科学家和工程师聚集在一个发生重大互动和交叉受精的环境中。欲了解更多信息,请访问会议网站http://m.njit.edu/Events/FACM15/.FACM系列会议在过去11年里由NJIT数学科学系和应用数学与统计中心组织。年度会议是传播应用数学和计算数学及统计学研究的论坛。FACM会议比大型社会会议更亲密,更以学生为中心,组织者的一个目标是向老牌研究人员和新兴研究领域介绍未来应用数学的领导者。通过贡献演讲,研究生和博士后的参与度大大提高,通过演讲,他们与顶尖科学家一起以小型符号形式发表演讲。对于学生和博士后来说,这将是一次学习和交流的经历,将有助于他们的研究和职业道路。将作出特别努力,继续让代表人数不足的群体参加会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Siegel其他文献

Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone
  • 通讯作者:
    H. A. Stone
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
  • DOI:
    10.1016/s0016-5085(22)62444-2
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja
  • 通讯作者:
    Asim Shuja
Highlights from the Field of Pediatric Dermatology Research from the 2023 PeDRA Annual Conference
2023 年小儿皮肤科研究领域亮点来自于小儿皮肤科研究协会年会
  • DOI:
    10.1016/j.jid.2024.09.014
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Hannah R. Chang;Morgan Dykman;Leslie Castelo-Soccio;Colleen H. Cotton;Carrie C. Coughlin;Elena B. Hawryluk;Leslie Lawley;Lara Wine Lee;Kalyani Marathe;Dawn H. Siegel;JiaDe Yu;PeDRA Focused Study Group Leads;Michael Siegel;Esteban Fernández Faith;Lisa Arkin
  • 通讯作者:
    Lisa Arkin
Effective Partnering in Conducting Benefit-Risk Patient Preference Studies: Perspectives From a Patient Advocacy Organization, a Pharmaceutical Company, and Academic Stated-Preference Researchers
  • DOI:
    10.1177/2168479017746404
  • 发表时间:
    2018-12-30
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Anne M. Wolka;Angelyn O. Fairchild;Shelby D. Reed;Greg Anglin;F. Reed Johnson;Michael Siegel;Rebecca Noel
  • 通讯作者:
    Rebecca Noel
Capturing the Dynamic Nature of Cyber Risk: Evidence from an Explorative Case Study
捕捉网络风险的动态本质:探索性案例研究的证据
  • DOI:
    10.24251/hicss.2023.738
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.3
  • 作者:
    S. Zeijlemaker;Michael Siegel
  • 通讯作者:
    Michael Siegel

Michael Siegel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Siegel', 18)}}的其他基金

Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
  • 批准号:
    1909407
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces
可变形界面感应电荷动电流的数值方法与分析
  • 批准号:
    1412789
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
  • 批准号:
    1444295
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
  • 批准号:
    1331010
  • 财政年份:
    2013
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
  • 批准号:
    1009105
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
  • 批准号:
    1016406
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
  • 批准号:
    0707263
  • 财政年份:
    2007
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
  • 批准号:
    0708977
  • 财政年份:
    2007
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
  • 批准号:
    0354560
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics (FACM-2022): New Perspectives in Mathematical Biology
应用与计算数学前沿会议(FACM-2022):数学生物学的新视角
  • 批准号:
    2154556
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics
应用与计算数学前沿会议
  • 批准号:
    1903321
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics
应用与计算数学前沿会议
  • 批准号:
    1614145
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
  • 批准号:
    1444295
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2011-2013
应用和计算数学前沿会议:2011-2013
  • 批准号:
    1108674
  • 财政年份:
    2011
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Conferences on Frontiers of Applied and Computational Mathematics, 2008-2010
应用与计算数学前沿会议,2008-2010
  • 批准号:
    0753092
  • 财政年份:
    2008
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Conference on Frontiers in Applied and Computational Mathematics (FACM): Spring 2007
应用与计算数学前沿会议 (FACM):2007 年春季
  • 批准号:
    0712974
  • 财政年份:
    2007
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics
应用与计算数学前沿会议
  • 批准号:
    0612007
  • 财政年份:
    2006
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了