SHARES - System-on-chip Heterogeneous Architecture Recognition Engine for Speech
SHARES - 用于语音的片上系统异构架构识别引擎
基本信息
- 批准号:EP/D048605/1
- 负责人:
- 金额:$ 64.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The availability of viable, robust speech recognition systems has the potential to revolutionalise the way that people interact with mobile technology. This implies moving beyond simple call home type commands, to being able to dictate arbitrary, extensive e-mails to your mobile device and to reliably and efficiently access its increasingly complex features using natural speech. This will unlock the potential of next generation portable technology to the widest range of potential users in many important application scenarios e.g. for emergency services and military environments as well as time-efficient business and consumer usage. The current issue is, however, that the increasing algorithmic complexity needed to meet user expectations for naturalness and robustness far exceeds the processing and power capabilities forecast for current embedded processor technology. New architectures are therefore needed to radically advance the pace of state-of-the-art recognition technology for mobile and embedded devices.Commercial speech recognition engines for mobile applications are typically small footprint versions of desktop solutions, with the recognition functionality for acceptable quality highly constrained to the processing and power budget available on any given embedded platform. Applications are typically constrained to a few commands and name or song lists. In comparison, state-of-the art research systems on natural unconstrained speech run up to 200-times slower than real-time on 2.8 GHz Xeon processors. In addition, algorithmic research to maintain recognition accuracy in acoustically noisy operating environments, considered essential to widespread adoption of recognition technology, points towards even greater complexity. The gap between algorithmic requirements and the processing and power capability of conventional processor platforms is thus growing even further.For large vocabulary continuous speech recognition (LVCSR) engines, decoding the most likely sequence of words is essentially an extremely large scale search problem over all possible word combinations. To cope with the huge size of the potential search space, search networks created dynamically during decoding were, until recently, considered the only viable approach to realise large vocabulary recognition. Static networks were too big for all but more constrained vocabulary tasks. However, in a significant departure from accepted wisdom, full expansion of large vocabulary static search networks prior to decoding has been importantly demonstrated using the Weighted Finite State Transducer (WFST). The WFST structure creates considerable potential for achieving efficient regularised decoding architectures, which we intend to exploit. To our knowledge, we would be the first to specifically exploit the Weighted Finite State Transducer network decoding framework in novel hardware architectures for low power large complexity speech recognition.
可行的、健壮的语音识别系统的可用性有可能彻底改变人们与移动的技术交互的方式。这意味着,您不仅可以使用简单的呼叫总部类型的命令,还可以向您的移动终端口述任意、大量的电子邮件,并使用自然语音可靠、高效地访问其日益复杂的功能。这将在许多重要的应用场景中为最广泛的潜在用户释放下一代便携式技术的潜力,例如紧急服务和军事环境以及时间效率高的商业和消费者使用。然而,当前的问题是,满足用户对自然性和鲁棒性的期望所需的算法复杂性的增加远远超过了当前嵌入式处理器技术的处理和功率能力预测。因此,需要新的体系结构来从根本上推进移动的和嵌入式设备的最先进的识别技术的步伐。用于移动的应用的商业语音识别引擎通常是桌面解决方案的小尺寸版本,具有可接受质量的识别功能高度受限于任何给定嵌入式平台上可用的处理和功率预算。应用程序通常被限制为几个命令和名称或歌曲列表。相比之下,最先进的自然无约束语音研究系统在2.8 GHz Xeon处理器上的实时运行速度要慢200倍。此外,算法研究,以保持识别精度在嘈杂的操作环境中,被认为是必要的广泛采用的识别技术,指向更大的复杂性。因此,算法要求与传统处理器平台的处理和功率能力之间的差距甚至进一步增长。对于大词汇量连续语音识别(LVCSR)引擎,解码最可能的单词序列本质上是在所有可能的单词组合上的极大规模搜索问题。为了科普巨大的潜在搜索空间,在解码过程中动态创建的搜索网络,直到最近,被认为是唯一可行的方法来实现大词汇识别。静态网络太大了,除了更受限制的词汇任务。然而,在一个显着偏离公认的智慧,充分扩展的大词汇量的静态搜索网络之前,解码已被重要地证明使用加权有限状态转换器(WFST)。WFST结构创造了相当大的潜力,实现高效的正则化解码架构,我们打算利用。据我们所知,我们将是第一个专门利用加权有限状态传感器网络解码框架在新的硬件架构低功耗大复杂度语音识别。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FPGA Implementation of a Pipelined Gaussian Calculation for HMM-Based Large Vocabulary Speech Recognition
基于 HMM 的大词汇量语音识别的流水线高斯计算的 FPGA 实现
- DOI:10.1155/2011/697080
- 发表时间:2011
- 期刊:
- 影响因子:4.3
- 作者:Veitch R
- 通讯作者:Veitch R
Noise Compensation and Missing-Feature Decoding for Large Vocabulary Speech Recognition in Noise
噪声中大词汇量语音识别的噪声补偿和缺失特征解码
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Lv, J
- 通讯作者:Lv, J
Replacing Uncertainty Decoding with Subband Re-estimation for Large Vocabulary Speech Recognition in Noise
用子带重估计代替不确定性解码,实现噪声中的大词汇量语音识别
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Lv, J
- 通讯作者:Lv, J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Woods其他文献
Convergent Multimodal Imaging Biomarkers of Transmodal Antidepressant Treatment Response: Preliminary Findings
- DOI:
10.1016/j.biopsych.2020.02.313 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Benjamin Wade;Ashish Sahib;Joana Loureiro;Megha Vasavada;Antoni Kubicki;Shantanu Joshi;Randall Espinoza;Roger Woods;Eliza Congdon;Katherine Narr - 通讯作者:
Katherine Narr
On the normalisation and mapping of influence lines
关于影响线的归一化与映射
- DOI:
10.1016/j.ymssp.2025.112883 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:8.900
- 作者:
Alan J. Ferguson;David Hester;Farhad Huseynov;Chul-Woo Kim;James Brownjohn;Roger Woods;Lawrence A. Bull - 通讯作者:
Lawrence A. Bull
Guest Editorial: Field Programmable Logic
- DOI:
10.1023/b:vlsi.0000008109.79717.12 - 发表时间:
2004-02-01 - 期刊:
- 影响因子:1.800
- 作者:
Roger Woods;Russ Tessier - 通讯作者:
Russ Tessier
A definition of average brain size, shape and orientation
- DOI:
10.1016/s1053-8119(00)91545-3 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Roger Woods;Paul Thompson;Arthur Toga;John Mazziotta - 通讯作者:
John Mazziotta
244. Clinically-Salient Modulation of Inhibitory Control Brain Networks by Transcranial Direct Current Stimulation (tDCS) Therapy in Depression
经颅直流电刺激(tDCS)疗法对抑郁症抑制控制脑网络的临床显著调节
- DOI:
10.1016/j.biopsych.2025.02.481 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Mayank Jog;Brandon Taraku;Paloma Pfeiffer;Viviane Norris;Jacquelyn Schneider;Suzanne Kozikowski;Artemis Zavaliangos-Petropulu;Michael Boucher;Marco Iacoboni;Roger Woods;Katherine Narr - 通讯作者:
Katherine Narr
Roger Woods的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Woods', 18)}}的其他基金
eFutures: Electronic systems technology for emerging challenges
eFutures:应对新兴挑战的电子系统技术
- 批准号:
EP/X039218/1 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories
RAPID:实时过程建模和诊断:为数字工厂提供动力
- 批准号:
EP/V02860X/1 - 财政年份:2022
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
eFutures 2.0: Addressing Future Challenges
eFutures 2.0:应对未来挑战
- 批准号:
EP/S032045/1 - 财政年份:2019
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
Programmable embedded platforms for remote and compute intensive image processing applications
适用于远程和计算密集型图像处理应用的可编程嵌入式平台
- 批准号:
EP/K009583/1 - 财政年份:2013
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
Adaptive Hardware Systems with Novel Algorithmic Design and Guaranteed Resource Bounds
具有新颖算法设计和有保证的资源范围的自适应硬件系统
- 批准号:
EP/F031017/1 - 财政年份:2008
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
Support for International Workshop on Applied Reconfigurable Computing in 2008
支持2008年应用可重构计算国际研讨会
- 批准号:
EP/G000867/1 - 财政年份:2008
- 资助金额:
$ 64.15万 - 项目类别:
Research Grant
相似国自然基金
基于铁死亡探讨黄芪甲苷调控System/Xc-/GSH/GPX4信号通路在神经损伤性勃起功能障碍治疗中的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
- 批准号:82304982
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
- 批准号:82360947
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内皮细胞机械敏感离子通道Piezo1通过HIF-1α/system Xc-介导BBB破坏在急性脑缺血再灌注损伤中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
- 批准号:2022JJ70123
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
ERI: FD-WiNoC: Area and Energy Efficient Full Duplex Transceiver System for Wireless Network on Chip
ERI:FD-WiNoC:用于片上无线网络的区域和节能全双工收发器系统
- 批准号:
2302010 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Standard Grant
Creation of an integrated chemical sensor system that combines molecular filtering, concentration, and sensing functions
创建集分子过滤、浓缩和传感功能于一体的集成化学传感器系统
- 批准号:
22KF0075 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FY23. SBIR TOPIC 167 PHASE I: ULTRAPORTABLE LAB-ON-A-CHIP BIOSENSOR SYSTEM FOR RAPID POSTMORTEM TOXICOLOGY. PERIOD OF PERFORMANCE: 9/27/23-9/26/24
23 财年。
- 批准号:
10947928 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Engineering lab-on-a-chip nervous system organoids for neuroprosthetic applications
用于神经修复应用的芯片神经系统类器官工程实验室
- 批准号:
2889429 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Studentship
A wireless closed-loop sleep modulation system-on-chip
无线闭环睡眠调制片上系统
- 批准号:
10733872 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
IMPACT OF LOSS OF THE AUTISM RISK GENE CHD8 ON EXPRESSION, EPIGENETICS AND CELLULAR FUNCTIONING OF THE DOPAMINERGIC SYSTEM
自闭症风险基因 CHD8 缺失对多巴胺能系统表达、表观遗传学和细胞功能的影响
- 批准号:
10660565 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Characterizing HIV-1 reservoirs in the central nervous system
中枢神经系统中 HIV-1 储存库的特征
- 批准号:
10772268 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
- 批准号:
23H01827 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an in vitro 3D model system of laryngeal tissue to elucidate the mechanism of laryngeal carcinogenesis
开发喉组织体外3D模型系统以阐明喉癌发生机制
- 批准号:
23K17190 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Aqueous two-phase system technology for biomarker isolation and next-generation non-invasive active surveillance of prostate cancer
用于生物标志物分离和下一代前列腺癌非侵入性主动监测的水两相系统技术
- 批准号:
478181 - 财政年份:2023
- 资助金额:
$ 64.15万 - 项目类别:
Operating Grants