Supramolecular self-assembly of 1-10nm templates for biofunctional surfaces, quantum information processing and nanoelectronics
用于生物功能表面、量子信息处理和纳米电子学的1-10nm模板的超分子自组装
基本信息
- 批准号:EP/D048761/1
- 负责人:
- 金额:$ 441.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanotechnology is concerned with the control of material properties and processes on a very small scale - comparable with the size of single molecules or atoms. The development of new techniques to achieve this level of control has been an active area of research for many years and it has become clear that there are many technological benefits which will follow from these developments. Perhaps the most obvious example of these benefits is the progressive increase in speed and memory of computers which has had enormous impact on society and is a direct result of the ability to manufacture ever smaller electronic components. The traditional approach to making small, nanoscale, structures is known as 'top-down'. In this approach the starting point is to take a large object and use various technologies to process it into smaller objects. For example one might start with a silicon surface and form features on the surface which have very small dimensions - in fact this is how a silicon microprocessor which controls a computer is manufactured. In our application we propose a revolutionary technology which may be classified as a 'bottom-up' nanotechnology. Here the approach is almost the opposite to the 'top-down' approach in that an object is built out of components which are smaller than the resulting structure. An everyday example would be a house which is built of smaller building blocks - bricks! The building blocks in our case would be single molecules, but, unlike the everyday example, our molecular bricks may be designed or programmed to interact with each other so that they spontaneously form structures of interest. This process is known as 'self-assembly' and is achieved by incorporating in the molecule some special groups which promote interactions to control the alignment and position of neighbouring molecules. In our work we use hydrogen bonding interactions - the forces which hold together many of the molecules of life such as proteins and DNA.The 'self-assembled' structures we have made so far have been relatively simple - honeycomb networks of molecules sitting on a surface. In these networks one molecule forms the honeycomb edge and another the vertex. Most importantly the spacing of the voids of the honeycomb is very small - about 3.5 nanometres, equivalent to a few tens of atoms or alternatively about 3 large molecules such as buckyballs - and can be controlled through the choice of edge molecules. Remarkably, we have found that the holes of the honeycomb network can be filled up in a controlled manner with other materials and they therefore offer a way of achieving the central goal of nanotechnology introduced above - control of materials down to the scale of single molecules. We are now proposing to develop this discovery into a technological approach to forming a whole range of new nanoscale networks using the same approach and using these structures as templates to control the properties of new materials for biotechnology, electronics and a new form of computing / quantum information processing - which is based on the controllable mixing of quantum wave functions. The work will bring together chemists who will make the specialised molecules which are required and physicists who will study the way in which these molecules combine in the self assembly process. These scientists will be joined by others who have interests in electronic materials, biology and quantum computing - these groups will use the networks for scientific and technological demonstrator applications. By the end of the project we aim to have developed the means of perfecting networks with different dimensions, strengths, and chemical properties and hope to make this templating technology available to a much wider community of scientists and engineers in academia and industry.
纳米技术关注的是在非常小的范围内控制材料的性质和过程--可与单个分子或原子的大小相媲美。多年来,开发实现这种控制水平的新技术一直是一个活跃的研究领域,显然,这些发展将带来许多技术上的好处。也许这些好处最明显的例子是计算机速度和内存的逐步提高,这对社会产生了巨大的影响,是制造越来越小的电子元件的能力的直接结果。制造小型纳米级结构的传统方法被称为“自上而下”。在这种方法中,起点是获取一个大对象,并使用各种技术将其处理成较小的对象。例如,人们可以从硅表面开始,在表面上形成尺寸非常小的特征--事实上,这就是控制计算机的硅微处理器的制造方法。在我们的应用中,我们提出了一种革命性的技术,可以被归类为“自下而上”的纳米技术。在这里,这种方法几乎与“自上而下”的方法相反,因为对象是由比结果结构更小的组件构建的。一个日常的例子是用更小的积木--砖建造的房子!在我们的例子中,构建块将是单分子,但与日常例子不同的是,我们的分子砖可能被设计或编程为相互作用,以便它们自发地形成感兴趣的结构。这个过程被称为“自组装”,是通过在分子中加入一些促进相互作用的特殊基团来控制相邻分子的排列和位置来实现的。在我们的工作中,我们使用氢键相互作用--将许多生命分子如蛋白质和DNA结合在一起的力。到目前为止,我们制造的“自组装”结构相对简单--位于表面的分子蜂窝网络。在这些网络中,一个分子形成蜂窝状边缘,另一个分子形成顶点。最重要的是,蜂窝的空隙间距非常小--大约3.5纳米,相当于几十个原子,或者大约3个大分子,比如巴基球--可以通过选择边缘分子来控制。值得注意的是,我们发现蜂窝网络的空洞可以用其他材料以受控的方式填充,因此它们提供了一种实现上述纳米技术的中心目标的方法-控制材料到单分子的规模。我们现在提议将这一发现发展成一种技术方法,使用相同的方法来形成一系列新的纳米级网络,并将这些结构用作模板来控制用于生物技术、电子学和基于量子波函数可控混合的新形式计算/量子信息处理的新材料的性质。这项工作将把制造所需的特殊分子的化学家和研究这些分子在自组装过程中结合的方式的物理学家聚集在一起。这些科学家将加入其他对电子材料、生物学和量子计算感兴趣的人的行列--这些小组将利用这些网络进行科学和技术示范应用。到项目结束时,我们的目标是开发出完善具有不同维度、强度和化学性质的网络的方法,并希望将这种模板技术提供给学术界和工业界更广泛的科学家和工程师社区。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular random tilings as glasses
- DOI:10.1073/pnas.0902443106
- 发表时间:2009-09-08
- 期刊:
- 影响因子:11.1
- 作者:Garrahan, Juan P.;Stannard, Andrew;Beton, Peter H.
- 通讯作者:Beton, Peter H.
Intricate Hydrogen-Bonded Networks: Binary and Ternary Combinations of Uracil, PTCDI, and Melamine
- DOI:10.1021/jp9113249
- 发表时间:2010-04-08
- 期刊:
- 影响因子:3.7
- 作者:Gardener, Jules A.;Shvarova, Olga Y.;Castell, Martin R.
- 通讯作者:Castell, Martin R.
Bis-morpholine-substituted perylene bisimides: impact of isomeric arrangement on electrochemical and spectroelectrochemical properties.
- DOI:10.1021/jo801557e
- 发表时间:2008-10
- 期刊:
- 影响因子:0
- 作者:G. Goretzki;E. Davies;S. Argent;W. Alsindi;Alexander J. Blake;John E. Warren;J. McMaster;N. Champnes
- 通讯作者:G. Goretzki;E. Davies;S. Argent;W. Alsindi;Alexander J. Blake;John E. Warren;J. McMaster;N. Champnes
Monolayers of trimesic and isophthalic acid on Cu and Ag: the influence of coordination strength on adsorption geometry
- DOI:10.1039/c3sc52137k
- 发表时间:2013-01-01
- 期刊:
- 影响因子:8.4
- 作者:Cebula, Izabela;Lu, Hao;Buck, Manfred
- 通讯作者:Buck, Manfred
Two-Dimensional Networks of Thiocyanuric Acid and Imine Bases Assisted by Weak Hydrogen Bonds
- DOI:10.1021/acs.cgd.9b01055
- 发表时间:2019-10-01
- 期刊:
- 影响因子:3.8
- 作者:Argent, Stephen P.;Golden, Emma;Champness, Neil R.
- 通讯作者:Champness, Neil R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Beton其他文献
Peter Beton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Beton', 18)}}的其他基金
Strain-engineered graphene: growth, modification and electronic properties
应变工程石墨烯:生长、改性和电子特性
- 批准号:
EP/P019080/1 - 财政年份:2017
- 资助金额:
$ 441.19万 - 项目类别:
Research Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
- 批准号:32001001
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
黎曼流形上的特殊几何结构及相关分类研究
- 批准号:11971153
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
转录因子ZBTB7B在小鼠乳腺发育过程中的功能及机制研究
- 批准号:31900514
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型代谢基因特征簇作为乳腺癌干细胞生物标志物及其靶向的研究
- 批准号:31900515
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
微环境中缝隙连接对果蝇神经干细胞自我更新与分化的调控机制
- 批准号:31771510
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 441.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The physics and structural biology of supramolecular protein self-assembly in meiotic chromosome synapsis
减数分裂染色体突触中超分子蛋白自组装的物理和结构生物学
- 批准号:
2894984 - 财政年份:2023
- 资助金额:
$ 441.19万 - 项目类别:
Studentship
Solid-state supramolecular polymers: a new era for polymer science
固态超分子聚合物:高分子科学的新时代
- 批准号:
22KF0396 - 财政年份:2023
- 资助金额:
$ 441.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Visualising superfine cerebrovasculature in MRI using supramolecular self-assembly
使用超分子自组装在 MRI 中可视化超细脑血管
- 批准号:
22K20520 - 财政年份:2022
- 资助金额:
$ 441.19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Supramolecular polymers for targeted protein degradation
用于靶向蛋白质降解的超分子聚合物
- 批准号:
10511617 - 财政年份:2022
- 资助金额:
$ 441.19万 - 项目类别:
Supramolecular biomaterials for tuning the inflammatory properties of the complement system
用于调节补体系统炎症特性的超分子生物材料
- 批准号:
10631187 - 财政年份:2022
- 资助金额:
$ 441.19万 - 项目类别:
Construction of life-like supramolecular materials based on hierarchical self-assembly
基于分层自组装构建逼真超分子材料
- 批准号:
22H02195 - 财政年份:2022
- 资助金额:
$ 441.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
- 批准号:
2144997 - 财政年份:2022
- 资助金额:
$ 441.19万 - 项目类别:
Continuing Grant
Sublingual Supramolecular Vaccines and Immunotherapies
舌下超分子疫苗和免疫疗法
- 批准号:
10671694 - 财政年份:2021
- 资助金额:
$ 441.19万 - 项目类别:
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
- 批准号:
10626132 - 财政年份:2021
- 资助金额:
$ 441.19万 - 项目类别:














{{item.name}}会员




