Structures and Stabilities of Nanoscale Bimetallic Clusters
纳米级双金属团簇的结构和稳定性
基本信息
- 批准号:EP/D056241/1
- 负责人:
- 金额:$ 15.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanotechnology often refers to exploratory engineering at atomic and molecular level, or to building things from the bottom up instead of from top down. This bottom up approach is akin to using Lego building blocks to construct a model with our imagination, a game every kid loves. In the nano-world, the blocks can be as small as elemental atoms themselves, like hydrogen, carbon, or gold. Not only models constructed are smaller and lighter than their larger counterparts, but also display many fascinating phenomena. For example, clusters - a tiny Lego block - comprising a few hundreds gold atoms display reddish colour instead of yellow. Indeed a full spectrum of colours may be obtained if we can prepare these clusters with different sizes. In this project, we wish to turn physical properties of Lego blocks not by changing their physical size, but their atomic composition and spatial arrangement. We will concentrate on metallic Lego blocks made of two different atomic species - they are called bimetallic nanoclusters. Scientists have found many ingenious ways of preparing these nanoclusters displaying unique properties. For example, one can replace some of gold atoms in the block by silver and get very different colour. However, very little is known about the relationship between properties and the internal atomic arrangement. In fact, in most cases, one cannot be sure if a desired structure has ever been produced. This is because the wisdom one accumulated in studying bulk materials might not apply for nanostructures. Thus the key part of the research is to characterize the internal structure of bimetallic nanoclusters as a basis for scientific understanding of the physical properties. It is well known that a modern electron microscope is capable of atomic scale imaging of nanoclusters. But this conventional technique cannot tell us if atoms within the clusters are gold or silver. We propose to use a scanning transmission electron microscope (STEM) in which the electron beam is focused to a small probe. As the probe is scanned across the sample, electrons scattered off the sample are collected to form an image. It can form an image of an atom because the scattering is strongest at the centre of the atom. It can also distinguish between gold and silver because the heavier gold can scatter more electrons than the lighter silver. Although this method has been available for sometime, the probe size was not fine enough to study small clusters. The probe size in an electron microscope is limited by the quality of electron optic. Recent technical advancements in aberration correction have enabled a significant reduction of the probe size down to 0.1 nm or less (smaller than atomic radius). We have shown recently that STEM imaging using such a fine probe is capable of revealing internal core-shell structures of ultrasmall gold/silver clusters. We want to take advantages of this powerful 'chemical' imaging tool to study the structure/property relationship of bimetallic nanoclusters. We hope to find out what kind of internal structures a bimetallic nanocluster can adopt and for how long. Depending on combination, two metallic species in clusters may be phase separated like oil and water, or dissolved each other like sugar and water. We want to know, at the nanometre scale, if a mixed structure can be formed in the former case, or if solubility is size dependent in the latter case. We also hope to find out what factors, either in the growth stage or in the service stage, have strong influence on the structure formed or transformed and if they are any different from those materials with larger dimensions. We believe such a study is crucial in fabricating designer's nanoclusters with specific physical properties. In this respect, we will concentrate on optical properties. The ultimate goal is to enable novel functional nanostructures to be designed and implemented for specific applications.
纳米技术通常指的是原子和分子水平上的探索性工程,或者是自下而上而不是自上而下地建造东西。这种自下而上的方法类似于用乐高积木来构建一个模型,用我们的想象力,一个每个孩子都喜欢的游戏。在纳米世界中,这些块可以像元素原子本身一样小,比如氢、碳或金。不仅建造的模型比大型模型更小,更轻,而且还展示了许多迷人的现象。例如,由数百个金原子组成的簇-一个微小的乐高积木-显示红色而不是黄色。事实上,如果我们能制备出不同大小的团簇,就可以得到全光谱的颜色。在这个项目中,我们希望改变乐高积木的物理特性,不是通过改变它们的物理尺寸,而是通过改变它们的原子组成和空间排列。我们将集中讨论由两种不同原子组成的金属乐高积木-它们被称为纳米团簇。科学家们已经发现了许多巧妙的方法来制备这些具有独特性质的纳米团簇。例如,可以用银代替块中的一些金原子,从而得到非常不同的颜色。然而,人们对性质与内部原子排列之间的关系知之甚少。事实上,在大多数情况下,人们无法确定是否已经产生了所需的结构。这是因为人们在研究块状材料时积累的智慧可能不适用于纳米结构。因此,研究的关键部分是表征纳米团簇的内部结构,作为科学理解物理性质的基础。众所周知,现代电子显微镜能够对纳米团簇进行原子尺度的成像。但是这种传统的技术不能告诉我们团簇中的原子是金还是银。我们建议使用扫描透射电子显微镜(STEM),其中电子束聚焦到一个小探头。当探针在样品上扫描时,从样品散射的电子被收集以形成图像。它可以形成原子的图像,因为原子中心的散射最强。它还可以区分金和银,因为较重的金比较轻的银能散射更多的电子。虽然这种方法已经有一段时间了,但探针的尺寸不够精细,无法研究小的团簇。电子显微镜中的探针尺寸受到电子光学质量的限制。像差校正的最新技术进步使得探针尺寸显著减小到0.1 nm或更小(小于原子半径)。我们最近已经表明,STEM成像使用这样一个很好的探针是能够揭示内部核壳结构的超小的金/银集群。我们希望利用这种强大的“化学”成像工具来研究纳米团簇的结构/性能关系。我们希望找出一个纳米团簇可以采用什么样的内部结构,以及可以持续多久。根据组合,簇中的两种金属物质可以像油和水一样相分离,或者像糖和水一样彼此溶解。我们想知道,在纳米尺度下,在前一种情况下是否可以形成混合结构,或者在后一种情况下溶解度是否取决于尺寸。我们还希望找出在生长阶段或在使用阶段,哪些因素对形成或转变的结构具有强烈的影响,以及它们是否与那些具有较大尺寸的材料有任何不同。我们相信,这样的研究是至关重要的,在制造设计师的纳米团簇具有特定的物理特性。在这方面,我们将集中讨论光学性质。最终目标是使新的功能性纳米结构能够被设计和实现用于特定的应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards
使用选定尺寸的团簇作为质量标准的工业钯催化剂颗粒的尺寸和形状
- DOI:10.1063/1.4801986
- 发表时间:2013
- 期刊:
- 影响因子:4
- 作者:Pearmain D
- 通讯作者:Pearmain D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziyou Li其他文献
Scanning Transmission Electron Microscopy Studies of Mono- and Bimetallic Nanoclusters
单金属和双金属纳米团簇的扫描透射电子显微镜研究
- DOI:
10.1016/b978-0-08-096357-0.00002-9 - 发表时间:
2012 - 期刊:
- 影响因子:8.6
- 作者:
Ziyou Li - 通讯作者:
Ziyou Li
Core level spectroscopy study of N2 adsorbed on (2 × 2)K/graphite
(2 × 2)K/石墨吸附 N2 的芯级光谱研究
- DOI:
10.1016/s0039-6028(98)00502-0 - 发表时间:
1998 - 期刊:
- 影响因子:1.9
- 作者:
C. Puglia;P. Bennich;J. Hasselström;C. Ribbing;P. Brühwiler;A. Nilsson;Ziyou Li;N. Mårtensson - 通讯作者:
N. Mårtensson
HAADF-STEM imaging of CuAg core-shell nanoparticles
CuAg 核壳纳米粒子的 HAADF-STEM 成像
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
C. Langlois;Z. W. Wang;D. Pearmain;C. Ricolleau;Ziyou Li - 通讯作者:
Ziyou Li
Towards sustainable steel corrosion protection: expanding the applicability of natural hydrolyzable tannin in epoxy coatings via metal complexation
迈向可持续的钢铁防腐:通过金属络合作用扩大天然可水解单宁在环氧涂料中的适用性
- DOI:
10.1016/j.electacta.2024.144546 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Chunping Qi;Ziyou Li;Huichao Bi;Kim Dam-Johansen - 通讯作者:
Kim Dam-Johansen
Biochar nanoparticles in zinc epoxy coatings: Dual-function as conductive filler and inhibitor carrier for enhanced anticorrosive performance
环氧锌涂层中的生物炭纳米粒子:作为导电填料和缓蚀剂载体的双重功能以增强防腐性能
- DOI:
10.1016/j.porgcoat.2025.109358 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:7.300
- 作者:
Ziyou Li;Chunping Qi;Huichao Bi;Michele Fedel;Kim Dam-Johansen - 通讯作者:
Kim Dam-Johansen
Ziyou Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziyou Li', 18)}}的其他基金
Towards an Atomic-scale Understanding of the 3D Structures of Size-selected Clusters on Surfaces
对表面上选定尺寸簇的 3D 结构进行原子尺度的理解
- 批准号:
EP/G070326/1 - 财政年份:2010
- 资助金额:
$ 15.85万 - 项目类别:
Research Grant
相似海外基金
Stabilities and properties of high-pressure oxide phases containing Cr with focus on solid solutions of (Mg,Fe2+)3Fe2O6 – testing for possible precursor phases for inclusions in diamond
含 Cr 的高压氧化物相的稳定性和性能,重点关注 (Mg,Fe2)3Fe2O6 的固溶体 â 测试金刚石中夹杂物可能的前体相
- 批准号:
504772250 - 财政年份:2022
- 资助金额:
$ 15.85万 - 项目类别:
Research Grants
Investigation of determining factor on electrochemical stabilities of lithium and sodium metal battery electrolytes
锂、钠金属电池电解液电化学稳定性决定因素的研究
- 批准号:
21K05263 - 财政年份:2021
- 资助金额:
$ 15.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymorph stabilities of pharmaceuticals used in the treatment of COVID-19
用于治疗 COVID-19 的药物的多晶型稳定性
- 批准号:
2589477 - 财政年份:2021
- 资助金额:
$ 15.85万 - 项目类别:
Studentship
Coral proxy archives infer relationships between climate changes and social stabilities in the Near East
珊瑚代理档案推断近东气候变化与社会稳定之间的关系
- 批准号:
20K13447 - 财政年份:2020
- 资助金额:
$ 15.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The temporal stabilities and life prediction of azole gas generator under humidity conditions
潮湿条件下唑类气体发生器的时间稳定性和寿命预测
- 批准号:
18K04640 - 财政年份:2018
- 资助金额:
$ 15.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a novel pipeline to determine monoclonal antibody solution structures and stabilities in bioprocessing conditions to optimise manufacture
开发一种新颖的管道来确定单克隆抗体溶液的结构和生物加工条件下的稳定性,以优化生产
- 批准号:
2196767 - 财政年份:2017
- 资助金额:
$ 15.85万 - 项目类别:
Studentship
Developing a novel pipeline to determine monoclonal antibody solution structures and stabilities in bioprocessing conditions to optimise manufacture
开发一种新颖的管道来确定单克隆抗体溶液的结构和生物加工条件下的稳定性,以优化生产
- 批准号:
1907217 - 财政年份:2017
- 资助金额:
$ 15.85万 - 项目类别:
Studentship
Rare-earth based alloys for hard-magnetic applications: Temperature and pressure dependent phase stabilities
用于硬磁应用的稀土基合金:温度和压力相关的相稳定性
- 批准号:
316912154 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Research Grants
Structures and stabilities of small gas-phase ions
小气相离子的结构和稳定性
- 批准号:
5879-2012 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Improvement of chemical stabilities of photoelectrodes by integration of oxygen plasma to an excimer-laser assisted metal organic deposition process
通过将氧等离子体集成到准分子激光辅助金属有机沉积工艺中来提高光电极的化学稳定性
- 批准号:
15K21008 - 财政年份:2015
- 资助金额:
$ 15.85万 - 项目类别:
Grant-in-Aid for Young Scientists (B)