A long view of curves in cryptography
密码学曲线的长远视角
基本信息
- 批准号:EP/D069904/1
- 负责人:
- 金额:$ 53.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electronic communications (such as the internet and mobile phones) are increasingly being used for financial transactions or for sending sensitive information. As a result, it is important to be able to ensure authentication and confidentiality in these situations. The subject of `cryptography' provides methods to secure communications, and for many of these applications the best solution is to use `public key cryptography'.Public key cryptosystems are usually related to mathematical problems which are difficult to solve computationally. For example, the security of the RSA cryptosystem is related to the problem of factorising an integer into a product of prime numbers. If the numbers are large enough this computational problem would take infeasibly large computer resources to solve.A full understanding of the RSA cryptosystem requires knowledge of many parts of mathematics. For example, the best general-purpose factoring algorithms rely on advanced mathematics such as algebraic number theory and algebraic geometry. Fortunately, a lot of the foundational mathematical theory behind RSA had been developed by mathematicians a long time ago, and so we have a good understanding of these issues.The research covered in this proposal is into a different type of public key cryptography, one which is based on hard mathematical problems such as the `discrete logarithm problem in divisor class groups of curves over finite fields' or the `bilinear Diffie-Hellman problem'. As with RSA, a full understanding of these cryptosystems requires knowledge about a number of mathematical questions. Unlike RSA, many of these questions have not been studied in the past. The aim of this proposal is to carry out mathematical research into some of these problems.One set of problems which will be studied is about how to efficiently compute with mappings called `isogenies' on divisor class groups of curves. There would be many applications of such a theory to cryptography and computational mathematics. Another set of problems relates to a very recent subject called `pairing based cryptography'. Being new, this subject lacks a suitable framework for studying some problems. The project will strengthen the foundations of pairing-based cryptography.The pure mathematical research performed will give a deeper understanding of the mathematics behind some public key cryptosystems. This will, in turn, lead to improvements in algorithm design and analysis. These improvements will have an impact on the practical use of public key cryptography.
电子通信(如互联网和移动的电话)正越来越多地用于金融交易或发送敏感信息。因此,在这些情况下能够确保身份验证和机密性非常重要。“密码学”这一学科提供了保障通信安全的方法,对于其中许多应用来说,最好的解决办法是使用“公钥密码学”,公钥密码系统通常涉及难以通过计算解决的数学问题。例如,RSA密码系统的安全性与将整数分解为素数的乘积的问题有关。如果数字足够大,这个计算问题将需要不可行的大量计算机资源来解决。RSA密码系统的全面理解需要数学的许多部分的知识。例如,最好的通用因式分解算法依赖于代数数论和代数几何等高等数学。幸运的是,RSA背后的许多基础数学理论在很久以前就已经被数学家们开发出来了,所以我们对这些问题有了很好的理解。本提案中涵盖的研究是一种不同类型的公钥密码术,一个是基于困难的数学问题,如“离散对数问题的除数类群的曲线在有限域”或“双线性Diffie-赫尔曼问题与RSA一样,要完全理解这些密码系统,需要了解一些数学问题。与RSA不同,这些问题中的许多在过去没有被研究过。本建议的目的是进行数学研究到这些问题中的一些。其中一组问题将被研究是关于如何有效地计算与映射称为'isogenies'的除数类组的曲线。这种理论在密码学和计算数学中有许多应用。另一组问题涉及一个非常新的主题,称为“基于配对的密码”。由于这门学科是一门新学科,对一些问题的研究还缺乏一个合适的框架。该项目将加强基于配对的密码学的基础。所进行的纯数学研究将使人们更深入地理解某些公钥密码系统背后的数学。这将反过来导致算法设计和分析的改进。这些改进将对公钥加密的实际使用产生影响。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simplified pairing computation and security implications
简化的配对计算和安全隐患
- DOI:10.1515/jmc.2007.013
- 发表时间:2007
- 期刊:
- 影响因子:1.2
- 作者:Galbraith S
- 通讯作者:Galbraith S
Algorithmic Number Theory
算法数论
- DOI:10.1007/978-3-540-79456-1_23
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Galbraith S
- 通讯作者:Galbraith S
Public Key Cryptography - PKC 2008
公钥密码学 - PKC 2008
- DOI:10.1007/978-3-540-78440-1_18
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Galbraith S
- 通讯作者:Galbraith S
Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves
- DOI:10.1007/s00145-010-9065-y
- 发表时间:2011-07-01
- 期刊:
- 影响因子:3
- 作者:Galbraith, Steven D.;Lin, Xibin;Scott, Michael
- 通讯作者:Scott, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Galbraith其他文献
Guest editorial: Special issue on Mathematics of Zero-Knowledge
- DOI:
10.1007/s10623-023-01260-2 - 发表时间:
2023-07-07 - 期刊:
- 影响因子:1.200
- 作者:
Steven Galbraith;Rosario Gennaro;Carla Ràfols;Ron Steinfeld - 通讯作者:
Ron Steinfeld
Steven Galbraith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Galbraith', 18)}}的其他基金
Foundational problems in the arithmetic of curves and abelian varieties over finite fields
有限域上曲线和阿贝尔簇算术的基本问题
- 批准号:
EP/C014839/1 - 财政年份:2006
- 资助金额:
$ 53.77万 - 项目类别:
Research Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
A macrophage-centric holistic view of postnatal development
以巨噬细胞为中心的产后发育整体观
- 批准号:
DP240102888 - 财政年份:2024
- 资助金额:
$ 53.77万 - 项目类别:
Discovery Projects
mRNA selection for translation: beyond the canonical view
用于翻译的 mRNA 选择:超越规范观点
- 批准号:
BB/Y005783/1 - 财政年份:2024
- 资助金额:
$ 53.77万 - 项目类别:
Research Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
- 批准号:
2350184 - 财政年份:2024
- 资助金额:
$ 53.77万 - 项目类别:
Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 53.77万 - 项目类别:
Standard Grant
Highly sensitive bioluminescence and fluorescence imaging system for large fields of view
用于大视场的高灵敏度生物发光和荧光成像系统
- 批准号:
520682693 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Major Research Instrumentation
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
- 批准号:
23K01515 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sharpening our view of Cluster Cosmology
加深我们对星团宇宙学的看法
- 批准号:
2307546 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Standard Grant
Latinas Resistance Behaviors in Engineering Programs at Predominantly White Institutions (PWIs) and Hispanic Serving Institutions (HSIs): An Intersectional View
以白人为主的机构 (PWI) 和西班牙裔服务机构 (HSI) 工程项目中拉丁裔的抵抗行为:交叉观点
- 批准号:
2247636 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Standard Grant
NeTS: Medium: Object-Centric, View-Adaptive and Progressive Coding and Streaming of Point Cloud Video
NeTS:Medium:以对象为中心、视图自适应和渐进式的点云视频编码和流式传输
- 批准号:
2312839 - 财政年份:2023
- 资助金额:
$ 53.77万 - 项目类别:
Continuing Grant