Foundational problems in the arithmetic of curves and abelian varieties over finite fields

有限域上曲线和阿贝尔簇算术的基本问题

基本信息

  • 批准号:
    EP/C014839/1
  • 负责人:
  • 金额:
    $ 14.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Electronic communications (such as the internet and mobile phones) are increasingly being used for financial transactions or for sending sensitive information. As a result, it is important to be able to ensure authentication and confidentiality in these situations. The subject of `cryptography' provides methods to secure communications, and for many of these applications the best solution is to use `public key cryptography'.Public key cryptosystems are usually related to mathematical problems which are difficult to solve computationally. For example, the security of the RSA cryptosystem is related to the problem of factorising an integer into a product of prime numbers. If the numbers are large enough this computational problem would take infeasibly large computer resources to solve.A full understanding of the RSA cryptosystem requires a knowledge of many parts of mathematics. For example, there are special factoring algorithms which work well on certain types of numbers (e.g., products of two primes which are very close together, or numbers divisible by primes of a certain form). Hence, to be sure of the security of a system it is important to determine the probability that a randomly chosen public key would be vulnerable to such attacks. Fortunately, a lot of the foundational mathematical theory behind RSA (e.g., the prime number theorem) had been developed by number theorists a long time ago, and so we have a good understanding of these issues.The research covered in this proposal is into a different type of public key cryptography, one which is based on a hard mathematical problem called the `discrete logarithm problem in divisor class groups of curves over finite fields'. As with RSA, a full understanding of these cryptosystems requires knowledge about a number of mathematical questions. Unlike RSA, many of these questions have not been studied in the past. The aim of this proposal is to carry out mathematical research into some of the foundational mathematical problems which are important for an understanding of cryptosystems based on algebraic curves.One set of problems which will be studied are the analogues of the problems mentioned above for RSA. For example, if a curve is chosen `randomly' over a finite field then it is important to determine how likely the divisor class group has size divisible by a large prime number. This problem has not yet been solved. The research proposal contains a description of an approach to solve this problem which will be carried out by the principal investigator of the project together with a postdoctoral research assistant.The pure mathematical research performed will lead to improvements in algorithm design and analysis. These improvements will have an impact on the practical use of public key cryptography. The research project will also enable a transfer of knowledge between the disciplines of pure mathematics and practical cryptography.
电子通信(如互联网和移动的电话)正越来越多地用于金融交易或发送敏感信息。因此,在这些情况下能够确保身份验证和机密性非常重要。“密码学”这一学科提供了保障通信安全的方法,对于其中许多应用来说,最好的解决办法是使用“公钥密码学”,公钥密码系统通常涉及难以通过计算解决的数学问题。例如,RSA密码系统的安全性与将整数分解为素数的乘积的问题有关。如果数字足够大,这个计算问题将需要不可行的大量计算机资源来解决。RSA密码系统的全面理解需要数学的许多部分的知识。例如,有一些特殊的因子分解算法可以很好地处理某些类型的数字(例如,两个非常接近的素数的乘积,或可被某种形式的素数整除的数)。因此,为了确保系统的安全性,重要的是确定随机选择的公钥容易受到这种攻击的概率。幸运的是,RSA背后的许多基础数学理论(例如,素数定理)早已由数论家发展出来,因此我们对这些问题有很好的理解。这项建议所涵盖的研究是一种不同类型的公钥密码学,这种密码学是基于一个称为“有限域上曲线的除数类群中的离散对数问题”的困难数学问题。与RSA一样,要完全理解这些密码系统,需要了解一些数学问题。与RSA不同,这些问题中的许多在过去没有被研究过。本建议的目的是进行数学研究的一些基本的数学问题,这是很重要的理解密码系统的基础上代数curve.One一组问题,这将被研究的类似问题,上述RSA。例如,如果在有限域上“随机”选择一条曲线,那么确定除数类组的大小被大素数整除的可能性是很重要的。这个问题还没有解决。研究计划书中描述了解决这一问题的方法,该方法将由项目的首席研究员和一名博士后研究助理共同进行,所进行的纯数学研究将导致算法设计和分析的改进。这些改进将对公钥加密的实际使用产生影响。该研究项目还将实现纯数学和实用密码学学科之间的知识转移。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves,
  • DOI:
    10.1007/s00145-009-9038-1
  • 发表时间:
    2008-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Benjamin A. Smith
  • 通讯作者:
    Benjamin A. Smith
Advances in Cryptology - EUROCRYPT 2008
密码学进展 - EUROCRYPT 2008
  • DOI:
    10.1007/978-3-540-78967-3_10
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smith B
  • 通讯作者:
    Smith B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Galbraith其他文献

Guest editorial: Special issue on Mathematics of Zero-Knowledge
  • DOI:
    10.1007/s10623-023-01260-2
  • 发表时间:
    2023-07-07
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Steven Galbraith;Rosario Gennaro;Carla Ràfols;Ron Steinfeld
  • 通讯作者:
    Ron Steinfeld

Steven Galbraith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Galbraith', 18)}}的其他基金

A long view of curves in cryptography
密码学曲线的长远视角
  • 批准号:
    EP/D069904/1
  • 财政年份:
    2007
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Fellowship

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
  • 批准号:
    22KJ0375
  • 财政年份:
    2023
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
  • 批准号:
    RGPIN-2018-03770
  • 财政年份:
    2022
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
  • 批准号:
    2208294
  • 财政年份:
    2022
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Standard Grant
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2022
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
  • 批准号:
    RGPIN-2018-03770
  • 财政年份:
    2021
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2021
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
  • 批准号:
    RGPIN-2018-03770
  • 财政年份:
    2020
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2020
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
  • 批准号:
    RGPIN-2018-03770
  • 财政年份:
    2019
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
  • 批准号:
    RGPIN-2017-03903
  • 财政年份:
    2019
  • 资助金额:
    $ 14.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了