Aeroelastic and Non-linear Structural Dynamic Interactions of Slender Structures
细长结构的气动弹性和非线性结构动态相互作用
基本信息
- 批准号:EP/D073944/1
- 负责人:
- 金额:$ 71.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As more slender and more adventurous structures, such as cable-stayed bridges, are constructed, they become increasingly susceptible to large amplitude vibrations, particularly due to aerodynamic loading. Wind-induced vibrations of bridge decks, cables, towers, lamp columns and overhead electricity cables are indeed very common. This can lead to unacceptably large movements, direct structural failure, or dangerous long-term fatigue damage of structural components. Complex interactions between the wind and the structure and also between different components of the structure (e.g. cables and bridge deck) can lead to vibration problems, so for proper understanding of the behaviour, both aerodynamic and structural effects need to be considered.Whilst some of the mechanisms of wind loading of structures are reasonably well understood, others are not, and many instances of vibrations, particularly of cables, are not well explained. Recent work has developed a generalised method for analysing 'galloping' vibrations. These are caused by changes in wind forces on a structure when it starts to move, which actually tend to increase the motion. For typical bridge cables (or other similar size structures) in moderately strong winds, a particular change in the wind flow around the cable occurs, known as the drag crisis. This changes the forces on the cable and causes a special case of galloping-type vibrations, which the new method of analysis is able to predict, for the first time. Comparisons of these calculations with wind tunnel test results on inclined cylinders have confirmed that the basic method does work, but there is a need to consider additional effects, such as wind turbulence, torsional motion of the structure and more accurate account of the changes in the aerodynamic forces as the structure moves. It is proposed to develop the approach to include these effects, using further wind tunnel data, to eventually create a unified framework for wind loading analysis of any real structure for galloping, together with the other aerodynamic mechanisms buffeting (due to wind turbulence) and flutter.Meanwhile, interactions between vibrations of structural components can cause serious effects. For example, very small vibrations of a bridge deck can cause very large vibrations of the cables supporting it, through the mechanism of 'parametric excitation'. Even more surprisingly, in other instances, localised cable vibrations can lead to vibrations of the whole structure. Research under another grant is already considering these effects for very simplified structures, but it is proposed to extend the analysis to realistic full structures. Also, often cables are tied together to try to prevent vibrations of individual cables, but they can then all vibrate together as a network. This project therefore aims to analyse full cable networks, to understand how their vibrations can be limited.Finally, it is proposed to bring together the above two main areas, to include both aerodynamic and structural dynamic interactions in the analysis of slender structures. For example, because of the interactions, the wind loads on relatively small elements, such as cables, can have surprisingly large effects on the overall dynamic response of large structures. At present this is generally ignored, but the joint approach will address this issue. Also, in some instances, only a combined view of the phenomena may be able to explain the behaviour observed on full-scale structures in practice. The holistic view of the wind loading and structural behaviour should provide tools to help avoid undesirable and potentially dangerous effects of vibrations of slender structures in the future. Based on the analysis, this could be achieved by modifying the shape of the elements to change the wind loads, or introducing dampers to absorb enough vibration energy.
随着更细长、更冒险的结构(如斜拉桥)的建造,它们越来越容易受到大振幅振动的影响,特别是由于空气动力载荷的影响。风引起的桥面、电缆、塔、灯柱和架空电缆的振动确实很常见。这可能导致不可接受的大运动,直接的结构破坏,或结构部件的危险的长期疲劳损伤。风与结构之间以及结构的不同组件(如电缆和桥面)之间的复杂相互作用可能导致振动问题,因此为了正确理解其行为,需要考虑空气动力学和结构效应。虽然一些结构的风荷载机制已经被很好地理解了,但其他的还没有,而且许多振动的例子,特别是电缆的振动,也没有得到很好的解释。最近的研究开发了一种分析“飞驰”振动的通用方法。这是由于建筑物开始移动时风力的变化造成的,这实际上倾向于增加运动。对于典型的桥梁电缆(或其他类似大小的结构),在中等强风中,电缆周围的气流会发生特殊的变化,称为阻力危机。这改变了缆索上的力,导致了一种特殊的飞奔型振动,这种新的分析方法第一次能够预测到这种振动。将这些计算结果与斜圆柱体风洞试验结果进行比较,证实了基本方法的有效性,但需要考虑额外的影响,如风湍流、结构的扭转运动以及更准确地描述结构运动时气动力的变化。研究人员建议,利用进一步的风洞数据,开发包括这些影响的方法,以最终创建一个统一的框架,用于任何实际结构的风荷载分析,以及其他气动机制抖振(由于风湍流)和颤振。同时,结构构件振动之间的相互作用会造成严重的影响。例如,通过“参数激励”机制,桥面非常小的振动可以引起支撑它的电缆的非常大的振动。更令人惊讶的是,在其他情况下,局部缆索振动会导致整个结构的振动。另一项拨款下的研究已经在考虑非常简化的结构的这些影响,但建议将分析扩展到现实的完整结构。此外,通常将电缆绑在一起是为了防止单个电缆的振动,但它们可以作为一个网络一起振动。因此,该项目旨在分析完整的电缆网络,以了解如何限制它们的振动。最后,建议将上述两个主要领域结合起来,在细长结构的分析中包括气动和结构动力相互作用。例如,由于相互作用,风荷载作用在相对较小的元件上,如电缆,可以对大型结构的整体动力响应产生惊人的大影响。目前这一点一般被忽视,但联合的办法将解决这个问题。此外,在某些情况下,只有对现象的综合看法才能解释实际中在全尺寸结构上观察到的行为。风荷载和结构行为的整体观点应该提供工具,以帮助避免未来细长结构振动的不良和潜在危险影响。根据分析,这可以通过改变元件的形状来改变风荷载,或者引入阻尼器来吸收足够的振动能量来实现。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures
- DOI:10.1016/j.jsv.2012.03.023
- 发表时间:2012-07-30
- 期刊:
- 影响因子:4.7
- 作者:Bocian, M.;Macdonald, J. H. G.;Burn, J. F.
- 通讯作者:Burn, J. F.
Identification of aeroelastic forces on bridge twin cables from full-scale measurements for skewed wind angles of attack
从斜风迎角的全尺寸测量中识别桥梁双缆上的气动弹性力
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Acampora A
- 通讯作者:Acampora A
Biomechanically Inspired Modeling of Pedestrian-Induced Vertical Self-Excited Forces
- DOI:10.1061/(asce)be.1943-5592.0000490
- 发表时间:2013-12-01
- 期刊:
- 影响因子:3.6
- 作者:Bocian, Mateusz;Macdonald, John H. G.;Burn, Jeremy F.
- 通讯作者:Burn, Jeremy F.
Identification of aeroelastic forces on bridge cables from full-scale measurements
通过全尺寸测量识别桥梁缆索上的气动弹性力
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Acampora A
- 通讯作者:Acampora A
Modelling of self-excited vertical forces on structures due to walking pedestrians
步行行人对结构产生的自激垂直力的建模
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Bocian M
- 通讯作者:Bocian M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Macdonald其他文献
Embracing Change
拥抱变革
- DOI:
10.2307/j.ctvcj2rgj.13 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
John Macdonald;Charles Branas;Robert Stokes - 通讯作者:
Robert Stokes
The effects of vacant lot greening and the impact of land use and business presence on crime
空地绿化的影响以及土地利用和商业存在对犯罪的影响
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jesse Cui;S. Jensen;John Macdonald - 通讯作者:
John Macdonald
Mobilization of peripheral blood stem cells by subcutaneous injections of yeast‐derived granulocyte macrophage colony stimulating factor: A phase I‐II study
皮下注射酵母源粒细胞巨噬细胞集落刺激因子动员外周血干细胞:I-II 期研究
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:5.2
- 作者:
K. Mangan;Mark Mullaney;T. Klumpp;S. Goldberg;John Macdonald - 通讯作者:
John Macdonald
Pathogenicity Experiments with the Flora of the Periodontium in Rice Rats
水稻大鼠牙周菌群的致病性实验
- DOI:
- 发表时间:
1960 - 期刊:
- 影响因子:0
- 作者:
John Macdonald;S. Socransky;Sylvia J. Sawyer - 通讯作者:
Sylvia J. Sawyer
Recombinant human interferon gamma: adverse effects in high-risk stage I and II cutaneous malignant melanoma.
重组人干扰素 γ:对高危 I 期和 II 期皮肤恶性黑色素瘤的不良影响。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
F. Meyskens;Kenneth J. Kopecky;Michael Samson;Evan M. Hersh;John Macdonald;Howard Jaffe;John Crowley;Charles A. Coltman - 通讯作者:
Charles A. Coltman
John Macdonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Macdonald', 18)}}的其他基金
PREPARE: Enhancing PREParedness for East African Countries through Seismic Resilience Engineering
PREPARE:通过抗震工程加强东非国家的备灾能力
- 批准号:
EP/P028233/1 - 财政年份:2017
- 资助金额:
$ 71.86万 - 项目类别:
Research Grant
Optimising polymer photovoltaic devices through control of phase-separation
通过控制相分离优化聚合物光伏器件
- 批准号:
EP/F016255/1 - 财政年份:2008
- 资助金额:
$ 71.86万 - 项目类别:
Research Grant
Porphyrin single molecule wires for nanoelectronics
用于纳米电子学的卟啉单分子线
- 批准号:
EP/D076072/1 - 财政年份:2007
- 资助金额:
$ 71.86万 - 项目类别:
Research Grant
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 71.86万 - 项目类别:
Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 71.86万 - 项目类别:
Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
$ 71.86万 - 项目类别:
Studentship
Quantum Manybody Dynamical Effects in Non-linear Optical Spectroscopy
非线性光谱学中的量子多体动力学效应
- 批准号:
2404788 - 财政年份:2024
- 资助金额:
$ 71.86万 - 项目类别:
Standard Grant
A computational approach to identify non-linear sequence similarity between lncRNAs
识别 lncRNA 之间非线性序列相似性的计算方法
- 批准号:
2228805 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear modelling of performance limiting MHD and disruptions in spherical tokamaks
球形托卡马克性能限制 MHD 和破坏的非线性建模
- 批准号:
2910483 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Studentship
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
- 批准号:
2341178 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Continuing Grant
Resonance investigation for SILA: novel linear actuation with non-contact magnetic transmission
SILA 共振研究:具有非接触式磁传输的新型线性驱动
- 批准号:
10060949 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Collaborative R&D
Non-linear large signal network analysis
非线性大信号网络分析
- 批准号:
512477106 - 财政年份:2023
- 资助金额:
$ 71.86万 - 项目类别:
Major Research Instrumentation