New Technology for Chemical Synthesis via Metal Catalysed C-H Functionalisation

金属催化C-H官能化化学合成新技术

基本信息

  • 批准号:
    EP/D078180/1
  • 负责人:
  • 金额:
    $ 39.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The structure and shape of molecules is determined by how atoms are joined together. The formation of chemical bonds between atoms is a fundamental process for making molecules. The synthesis of organic molecules that are of potential medicinal importance relies almost exclusively on the formation of chemical bonds between carbon atoms. The formation of bonds between carbon atoms does not happen spontaneously, they usually require the correct union of two activated moelcules. In order to activate the molecule it is necessary to chemically modifiy it (for example add an activating moelcule to it). This process though requires an additional chemcial reaction and thus reducues the overall efficiency of the process. Furthermore, after the desired bond formation is carried out you are left with the residual activating agent that is of no use to anyone. Furthermore, these residues are often toxic and can be expensive to dispose of. Therefore, current methods of C-C bond formation are often inefficient and can be described as having poor atom economy (ie. not many of the atoms that you use in the starting molecules end up in the new molecule).The most common bond in nature is the C-H bond, and these are usually classed as unreactive (unless they are close to an activating functional group). Conceptually, if you can make an important C-C bond from simple C-H bond then all you lose are two hydrogen atoms. Not only is this atom economic (H2 has a molecular mass of 2 and this is a tiny fraction of the product mass). Therefore, if we can form C-C bonds from C-H bonds then you don't have to preactivate and you hardly lose anything. It makes the whole process more efficient, environmentally friendly and cost efficient. This research involves trying to discover new ways to make molecules that have important medicinal properties (like anti-cancer) by simply activating 'inert' C-H bonds. It allows the synthetic chemist to make these important structures quickly and efficiently that can speed up the drug discovery process. Becasue this is such a new area there is also the possibility if discovering things that you weren't even looking for and of course this can lead into whole new areas of research. At the end of the day it is the excitment of discovering something new that might have important consequences in everyday life that drives science forward. This proposal was recently submitted through responsive mode and although was not funded was recommended for immediate re-submission with the 6-month delay waived. The proposal has not changed from the original.
分子的结构和形状取决于原子如何连接在一起。原子之间化学键的形成是制造分子的基本过程。具有潜在药用重要性的有机分子的合成几乎完全取决于碳原子之间的化学键形成。碳原子之间键的形成不会自发发生,通常需要两个活化的摩尔孔的正确结合。为了激活分子,有必要对其进行化学修饰(例如,在其上添加激活的摩尔孔)。尽管此过程需要额外的化学反应,从而降低了该过程的总体效率。此外,在进行所需的债券形成后,您将留下对任何人无用的残留激活剂。此外,这些残留物通常是有毒的,并且处置可能很昂贵。因此,当前的C-C键形成方法通常效率低下,可以描述为原子经济差(即,您在起始分子中使用的原子并不多的原子最终出现在新分子中)。本质上最常见的键是C-H键,并且通常将其分类为无反应性(除非它们接近活性功能组)。从概念上讲,如果您可以从简单的C-H键中建立重要的C-C键,那么您将损失的只是两个氢原子。这种原子不仅是原子经济(H2的分子质量为2,这是产品质量的一小部分)。因此,如果我们可以从C-H债券中形成C-C键,那么您不必预先激活,而且几乎不会失去任何东西。它使整个过程效率更高,环保和成本效益。这项研究涉及试图通过简单地激活“惰性” C-H键来发现具有重要药用特性(例如抗癌)的分子的新方法。它允许合成化学家快速有效地制造这些重要的结构,从而加快药物发现过程。因为这是一个新领域,因此发现您甚至没有寻找的东西,当然也可能导致全新的研究领域。归根结底,这是发现可能在日常生活中产生重要后果的新事物的兴奋,这会推动科学前进。该提案最近是通过响应模式提交的,尽管没有资助,但建议立即重新提取6个月的延迟。该提案并未与原始提案更改。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Gaunt其他文献

Matthew Gaunt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Gaunt', 18)}}的其他基金

Anion-Gated Dual Catalysis: Alkene Difunctionalization Accelerated by High Throughput Experimentation
阴离子门控双重催化:高通量实验加速烯烃双官能化
  • 批准号:
    EP/X015262/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
ChemDecEpi: A Chemical Synthesis Approach towards Decoding the Epitranscriptome
ChemDecEpi:解码表观转录组的化学合成方法
  • 批准号:
    EP/X032043/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
A Protein Functionalization Platform Based on Selective Modification at Methionine Residues
基于蛋氨酸残基选择性修饰的蛋白质功能化平台
  • 批准号:
    EP/S033912/1
  • 财政年份:
    2020
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Fellowship
A Multi-Component Strategy for the Synthesis of Complex Aliphatic Amines using Photo-redox Catalysis
利用光氧化还原催化合成复杂脂肪胺的多组分策略
  • 批准号:
    EP/S020292/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
Catalytic C-H Activation of Aliphatic Amines
脂肪胺的催化 C-H 活化
  • 批准号:
    EP/N031792/1
  • 财政年份:
    2016
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
New catalytic strategies for chemical synthesis: Catalytic Enantioselective Dearomatization
化学合成的新催化策略:催化对映选择性脱芳构化
  • 批准号:
    EP/I002065/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
Changing the nature of chemical synthesis through metal catalyzed C-H bond functionalization
通过金属催化的C-H键功能化改变化学合成的性质
  • 批准号:
    EP/I00548X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Fellowship

相似国自然基金

应用蛋白酶荧光成像技术研发新的AD早期生物标志物
  • 批准号:
    91949116
  • 批准年份:
    2019
  • 资助金额:
    68.0 万元
  • 项目类别:
    重大研究计划
基于同步辐射光电子光离子符合光谱技术的大气新粒子成核分子团簇研究
  • 批准号:
    91961123
  • 批准年份:
    2019
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
基于稳定同位素示踪技术研究大气沉降“新汞”在稻田生态系统中的生物地球化学过程
  • 批准号:
    41703130
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
CMR/R技术在优化新农药先导化合物中的应用研究
  • 批准号:
    20372021
  • 批准年份:
    2003
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
用纳米技术建立电分析化学的新原理、新方法研究
  • 批准号:
    20175006
  • 批准年份:
    2001
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
  • 批准号:
    10829717
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
  • 批准号:
    10819019
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
  • 批准号:
    10784165
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
Synthetic Scavenger Medical Countermeasures for Fentanyl
芬太尼的合成清除剂医疗对策
  • 批准号:
    10726539
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
Biocontainment Research Support Service(s) Core
生物防护研究支持服务核心
  • 批准号:
    10793830
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了