Stretching the Endurance Boundary of Composite Materials, Pushing the Performance Limit of Composite Structures: A Key UK-USA Workshop

拓展复合材料的耐久性边界,突破复合结构的性能极限:英美重要研讨会

基本信息

  • 批准号:
    EP/D078504/1
  • 负责人:
  • 金额:
    $ 4.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The driving force to get new lightweight composite materials into the air comes from the increasing cost of fuel worldwide. An airline industry's response to higher fuel charges is to make aircraft lighter and more fuel efficient. What appears to be a paradox is that as the cost of fuel is going up, so is the size of airframe; the new Airbus super-jumbo A380 is an example. New composite materials including those based on carbon fibre (CFRP) and the glass fibre laminate called GLARE are replacing aluminium alloys, and modern civil airliners like Boeing's brand new 787, and the Airbus A350 may contain up to 50% by weight of composite material. The infrastructure required to support these new advances includes: fibre production and resin processing, manufacture of innovative fibre pre-preg architecture, new machine tools and assembly jigs, advanced fabrication processes and factory-of-the-future design, structure formulation of composite material systems, and revised test methods. In addition, is the need for improved design techniques to optimise airframe layout thereby maximising acceptable (safe) working loads. And at the same time, we must reduce fabrication costs through automation and low temperature curing matrix systems, and certify practical advanced inspection techniques for defect detection and repair. In the UK alone, we have 3,000 companies with 150,000 employed directly in aerospace, and 350,000 indirectly employed. The turnover in 2001 was 18.42 billion (58% civil, 42% military) and was the UK's second highest export sector with 2.8 billion. The total projected aircraft market (1999 - 2008) is more than $500 billion.The expectation is for materials to last longer and for structures to operate safely and reliably at increasingly higher stresses. In the case of engine components, we expect the material to work successfully at even greater elevated temperature. The requirement is to push the performance of the structure to its limit thereby stretching composite materials to their boundary of strength and endurance. Innovation in design and advancement in material know-how through discovery is no longer the single option. Now safety becomes the first issue of the day. At the moment, we see airframes made from composites, arriving at the probability of a successful outcome of a safe design by using intuition and our experience of circumstances that we have encountered before. But if we are to imagine the future differently, disaster as an act of God or of bad luck has to go. Predictive engineering design by intelligent-informed empiricism is the only show in town , the purpose of which is the identification and avoidance of all conceivable sources of weakness in the material and misfortune of structure. As always in science, advancement made brings a new set of great unknowns into sharper focus. Having discovered that we can grasp the basics of the origins of composite material behaviour, a myriad of other questions present themselves, questions about structural integrity and reliability of airframes, for instance, that we can realistically hope to answer. Currently, however, the development of civil aerospace composite materials lacks proven test methodologies, reliable durability assessment techniques, and certification procedures to satisfy the European Aviation Safety Agency (EASA) and the Federal Aviation Authority (FAA) in the USA. In particular, the UK aerospace industry requires the formulation of new composite certification standards in tandem with evolving composite technology. Towards these ends, the FAA has formed a US Partnership in Advanced Materials in Transport Aircraft Structures (AMTAS) led by the University of Washington, which has on-board industry, government and academia. In this respect, we lag behind in the UK. This Workshop will point out the path to follow for UK dominance in the application of aerospace composite material systems.
推动新型轻质复合材料升空的动力来自于全球不断上涨的燃料成本。航空业对燃油价格上涨的反应是让飞机变得更轻、更省油。看似矛盾的是,随着燃料成本的上涨,机身的尺寸也在上涨;新的空客超大型客机A380就是一个例子。包括碳纤维(CFRP)和玻璃纤维层压板在内的新型复合材料正在取代铝合金,现代民用客机如波音全新的787和空中客车A350的复合材料重量可能高达50%。支持这些新进展所需的基础设施包括:纤维生产和树脂加工、创新的纤维预浸料体系结构的制造、新型机床和装配夹具、先进的制造工艺和未来工厂设计、复合材料系统的结构配方以及经修订的测试方法。此外,需要改进设计技术以优化机身布局,从而最大限度地增加可接受的(安全)工作负荷。同时,我们必须通过自动化和低温固化基质系统来降低制造成本,并认证用于缺陷检测和修复的实用先进检测技术。仅在英国,我们就有3000家公司,其中15万人直接受雇于航空航天,35万人间接受雇。2001年的营业额为184.2亿英镑(58%为民用,42%为军用),是英国第二大出口部门,出口额为28亿英镑。预计(1999-2008年)飞机市场总额将超过5000亿美元。预计材料的使用寿命更长,结构在越来越高的应力下安全可靠地运行。在发动机部件的情况下,我们希望材料在更高的高温下成功工作。要求是将结构的性能推向极限,从而将复合材料拉伸到其强度和耐久性的边界。通过发现,设计创新和材料技术进步不再是唯一的选择。现在,安全问题成了当务之急。目前,我们看到由复合材料制成的机身,通过使用我们以前遇到过的直觉和我们对情况的经验,得出安全设计成功的可能性。但如果我们要以不同的方式想象未来,灾难作为上帝的行为或坏运气就必须消失。由智能信息经验主义进行的预测性工程设计是镇上唯一的展示,其目的是识别和避免所有可以想象到的材料薄弱和结构不幸的来源。在科学领域,一如既往的进步将一系列新的重大未知因素带到了更清晰的焦点上。在发现我们可以掌握复合材料行为起源的基础之后,无数其他问题也随之出现,例如,关于机身结构完整性和可靠性的问题,我们可以现实地希望得到答案。然而,目前民用航空复合材料的发展缺乏成熟的测试方法、可靠的耐久性评估技术和认证程序,无法满足欧洲航空安全局(EASA)和美国联邦航空局(FAA)的要求。特别是,英国航空航天工业要求制定新的复合材料认证标准,以配合不断发展的复合材料技术。为此,美国联邦航空局成立了由华盛顿大学牵头的美国运输机结构先进材料合作伙伴关系(AMTAS),该伙伴关系的成员包括工业界、政府和学术界。在这方面,我们在英国落后了。本次研讨会将为英国在航空复合材料系统的应用中占据主导地位指明道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Beaumont其他文献

The Editor-in-Chief Writes...
  • DOI:
    10.1007/s10443-017-9599-3
  • 发表时间:
    2017-03-14
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Peter Beaumont;Costas Soutis
  • 通讯作者:
    Costas Soutis
50 Years of Carbon Fibre
  • DOI:
    10.1007/s10443-017-9586-8
  • 发表时间:
    2017-02-18
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Peter Beaumont
  • 通讯作者:
    Peter Beaumont
Pleistocene geochronology and palaeothermometry from protein diagenesis in ostrich eggshells: implications for the evolution of modern humans.
鸵鸟蛋壳中蛋白质成岩作用的更新世地质年代学和古温度测量:对现代人类进化的影响。

Peter Beaumont的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
  • 批准号:
    10103129
  • 财政年份:
    2024
  • 资助金额:
    $ 4.72万
  • 项目类别:
    EU-Funded
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334994
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334995
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
EAGER: A low-cost, long-endurance observational platform for the Arctic atmospheric boundary layer
EAGER:低成本、长航时的北极大气边界层观测平台
  • 批准号:
    2413498
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
Exploring endurance and resistance exercise mimetics - focusing on drug synergies.
探索耐力和阻力运动模拟 - 重点关注药物协同作用。
  • 批准号:
    22KJ1369
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: A low-cost, long-endurance observational platform for the Arctic atmospheric boundary layer
EAGER:低成本、长航时的北极大气边界层观测平台
  • 批准号:
    2302530
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
Establishment of swallowing evaluation method considering endurance
考虑耐力的吞咽评价方法的建立
  • 批准号:
    23K16603
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Impact of Lingual Endurance Exercise on Rehabilitation of Swallowing Impairments after lschemic Stroke
舌耐力运动对缺血性中风后吞咽障碍康复的影响
  • 批准号:
    10644397
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
Anabolic Versus Catabolic Skeletal Effects of Endurance or Resistance Exercise in Older Veterans
老年退伍军人耐力或抗阻运动的合成代谢与分解代谢骨骼效应
  • 批准号:
    10609838
  • 财政年份:
    2022
  • 资助金额:
    $ 4.72万
  • 项目类别:
Aortic Dilatation in Endurance Athletes: A Physiologic and Mechanistic Study
耐力运动员的主动脉扩张:生理学和机制研究
  • 批准号:
    10681473
  • 财政年份:
    2022
  • 资助金额:
    $ 4.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了