Diophantine Equations after Fermat's Last Theorem
费马大定理后的丢番图方程
基本信息
- 批准号:EP/D079543/1
- 负责人:
- 金额:$ 26.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A Diophantine problem is an equation where one is interested in finding solutions that are whole numbers. The study of Diophantine problem goes back at least to the time of Diophantus in the third century BC. The most famous Diophantine problem of all time is 'Fermat's Last Theorem'. This problem attracted the attention of huge numbers of both professional and amatuer Mathematicians for over 350 years, and was finally solved by Andrew Wiles in 1994. At first, it seemed that very few Diophantine problems can be solved using Wiles' technique. However, a few years ago, the Principal Investigator proposed that to successfully solve other interesting Diophantine problems, Wiles' ideas must be combined with other, unrelated, methods from what is called 'Diophantine analysis'. The strategy proposed by the Principal Investigator was carried out by a team consisting of himself, and Bugeaud and Mignotte; this has lead to spectacular successes including the resolution of several famous unsolved problems. The best known of these is to find all the perfect powers in the Fibonacci sequence. This was an unsolved problem for over 50 years and was finally solved in 2003 by the above-mentioned team.Very recently, the Principal Investigator suggested a refinement of the technique used in the proof of Fermat's Last Theorem which he called 'Multi-Frey'. This gives far more information about the solutions of Diophantine problems than the 'Single-Frey' that is used in the proof of Fermat's Last Theorem. Using this approach the above-mentioned team successfully solved several Diophantine equations involving 5 and 6 unknowns; a feet believed to be without parallel.The first part of the proposed research builds on the recent successes. It is expected to investigate the ideas in the most general context possible instead of looking just at particular cases. The 'multi-Frey' technique needs to studied throughly and the Diophantine equations that it applies to have to be classified.Another aspect of the Principal Investigator's work is 'Arithmetic of Curves'. Diophantine equations are classified according to something called 'dimension'. Those having dimension one are called curves. An obvious question about to ask about any Diophantine problem (even curves) is: does it have solutions? If it seems that a Diophantine equation does not have solutions, another question is: how can we make sure of this? Many methods have been proposed for showing that certain curves do not have solutions. The Principal Investigator, in joint work with Martin Bright suggested a very simple method for showing that some curves do not have solutions. This method appears to be the simplest method yet and requires the least amount of information and computation. However, we have yet to understand if it gives the same information as the other methods in all cases, and we have yet to gain a conceptual understanding of the ideas involved. These are both directions of proposed research.The subject of Diophantine equations has long ago fragmented to several sub-disciplines with little or no interaction between them. This project aims to combine techniques from several of these sub-disciplines to study interesting Diophantine problems. It is expected to be a step forward toward re-unifying the subject of Diophantine equations.
丢番图问题是一个方程,其中一个感兴趣的是找到整数的解决方案。对丢番图问题的研究至少可以追溯到公元前世纪的丢番图时代。有史以来最著名的丢番图问题是“费马最后定理”。这个问题吸引了大量的专业和业余数学家的注意力超过350年,并最终解决了安德鲁怀尔斯在1994年。起初,似乎很少有丢番图问题可以用怀尔斯的技术解决。然而,几年前,首席研究员提出,要成功地解决其他有趣的丢番图问题,怀尔斯的想法必须与其他无关的方法相结合,这些方法被称为“丢番图分析”。首席研究员提出的策略由他自己、Bugeaud和Mittette组成的团队执行;这导致了巨大的成功,包括解决了几个著名的未解决问题。其中最著名的是找到斐波那契数列中的所有完美幂。这是一个50多年来一直没有解决的问题,最终在2003年由上述团队解决。最近,首席研究员建议改进用于证明费马大定理的技术,他称之为“多自由”。这给了更多的信息,解决方案的丢番图问题比'单弗雷',这是用于证明费马大定理。使用这种方法,上述团队成功地解决了几个丢番图方程,涉及5和6个未知数;一英尺被认为是没有平行。拟议研究的第一部分建立在最近的成功。人们希望在尽可能广泛的背景下调查这些想法,而不仅仅是在特定的情况下。“多弗雷”技术需要深入研究,它适用的丢番图方程必须分类。首席研究员工作的另一个方面是“曲线的算术”。丢番图方程是根据所谓的“维数”来分类的。那些具有一维的称为曲线。对于任何丢番图问题(甚至是曲线),一个显而易见的问题是:它有解吗?如果丢番图方程似乎没有解,另一个问题是:我们如何才能确定这一点?已经提出了许多方法来证明某些曲线没有解。首席研究员,在联合工作与马丁明亮提出了一个非常简单的方法,以显示一些曲线没有解决方案。这种方法似乎是最简单的方法,需要的信息和计算量最少。然而,我们还没有了解它是否在所有情况下都能提供与其他方法相同的信息,我们还没有从概念上理解所涉及的思想。丢番图方程的研究在很久以前就被分成了几个分支学科,它们之间很少或根本没有相互作用。这个项目的目的是联合收割机技术从几个这些子学科研究有趣的丢番图问题。它有望成为统一丢番图方程的一个步骤。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Almost powers in the Lucas sequence
- DOI:10.5802/jtnb.642
- 发表时间:2008
- 期刊:
- 影响因子:0.4
- 作者:Y. Bugeaud;F. Luca;M. Mignotte;S. Siksek
- 通讯作者:Y. Bugeaud;F. Luca;M. Mignotte;S. Siksek
Integral points on hyperelliptic curves
超椭圆曲线上的积分点
- DOI:10.2140/ant.2008.2.859
- 发表时间:2008
- 期刊:
- 影响因子:1.3
- 作者:Bugeaud Y
- 通讯作者:Bugeaud Y
Chabauty for symmetric powers of curves
曲线对称幂的 Chabauty
- DOI:10.2140/ant.2009.3.209
- 发表时间:2009
- 期刊:
- 影响因子:1.3
- 作者:Siksek S
- 通讯作者:Siksek S
Algorithm 898 Efficient multiplication of dense matrices over GF(2)
算法 898 GF(2) 上稠密矩阵的高效乘法
- DOI:10.1145/1644001.1644010
- 发表时间:2010
- 期刊:
- 影响因子:2.7
- 作者:Albrecht M
- 通讯作者:Albrecht M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samir Siksek其他文献
The modular approach to Diophantine equations over totally real fields
全实域上丢番图方程的模块化方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Maleeha Khawaja;Samir Siksek - 通讯作者:
Samir Siksek
Perfect powers expressible as sums of two cubes
- DOI:
10.1016/j.jalgebra.2009.03.010 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Imin Chen;Samir Siksek - 通讯作者:
Samir Siksek
The generalised Fermat equation x 2 + y 3 = z 15
- DOI:
10.1007/s00013-014-0639-z - 发表时间:
2014-05-29 - 期刊:
- 影响因子:0.500
- 作者:
Samir Siksek;Michael Stoll - 通讯作者:
Michael Stoll
Samir Siksek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samir Siksek', 18)}}的其他基金
Moduli of Elliptic Curves and Classical Diophantine Problems
椭圆曲线模和经典丢番图问题
- 批准号:
EP/S031537/1 - 财政年份:2020
- 资助金额:
$ 26.31万 - 项目类别:
Research Grant
Warwick Symposium: Number Theory
沃里克研讨会:数论
- 批准号:
EP/J009660/1 - 财政年份:2012
- 资助金额:
$ 26.31万 - 项目类别:
Research Grant
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Research Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
- 批准号:
10091110 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Research Grant