Combinational and Homotopy Theory of Classifying Spaces of fusion Systems

融合系统分类空间的组合同伦理论

基本信息

  • 批准号:
    EP/D506484/1
  • 负责人:
  • 金额:
    $ 13.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The concept of p-local finite groups provides a natural framework to explore the deep relationship between Topology and Algebra. Since the introduction of p-local finite groups there is a growing interest in the subject by both representation theorists and topologists, yielding fresh interdisciplinary research contacts between researchers in these areas. The new theory gave rise to interesting results, as well as fascinating new questions.Underlying a p-local finite group is a finite p-group S together with two categories. The first category is called a saturated fusion system over S which is a central object in modern Group theory. The second category, called a centric linking system , is an ingenious development of Broto, Levi and Oliver. It endows the fusion system with, among other things, a classifying space which establishes the link to Topology. Our aim in the project we propose is to explore these spaces. We review below a few of the themes in this project and give a more elaborate description in the Case for Support.The main new ingredient in p-local finite groups, that was not available before, is their classifying spaces. Our main goal is to understand the homotopy type of these spaces. The benefit is twofold. First, such information is crucial to the understanding of mapping spaces between p-local finite groups. This is an ultimate goal of the theory, in fact, p-local finite groups were motivated by the desire to understand the mapping spaces between p-completed classifying spaces of finite groups. Second, by having a grip on algebraic invariants of the classifying space of a p-local finite group, for example its fundamental group, we aim to recover the p-local finite group from its classifying space by a purely combinatorial procedure, rather than the complicated topological one, which is currently at our possession. Such a construction is desirable because it will make the topological data in the classifying space more accessible to group theorists.There are two approaches we will exploit to achieve our goals. The first approach is to use homotopy decompositions. The philosophy behind this approach is to approximate the classifying space under consideration by gluing together simpler spaces. Then one analyses each one of the components and the gluing information in the decomposition. This procedure has a long history, but the known methods cannot be applied to p-local finite groups. Fresh ideas are needed to apply the philosophy of decompositions in the new setup.The second approach is the usual one in Algebraic Topology, that is, to study algebraic invariants of spaces. So far only the cohomology rings of the classifying spaces of p-local finite groups are understood. Our aim is to introduce and study more algebraic invariants that will reflect the combinatorics in the two categories underlying a p-local finite group.Funds are requested to cover the cost of a full time research assistant for 24 months.
p-局部有限群的概念提供了一个自然的框架来探索拓扑学和代数学之间的深层关系。自从引入p-局部有限群以来,表示理论家和拓扑学家对这个问题的兴趣越来越大,在这些领域的研究人员之间产生了新的跨学科研究联系。这个新的理论产生了有趣的结果,以及迷人的新问题。一个p-局部有限群的基础是一个有限p-群S连同两个范畴。第一类称为S上的饱和融合系统,它是现代群论的中心对象。第二类,称为中心连接系统,是Broto,Levi和奥利弗的巧妙发展。除其他外,它赋予融合系统一个分类空间,该空间建立了与拓扑的链接。我们在项目中提出的目标是探索这些空间。下面我们回顾一下这个项目中的一些主题,并在支持案例中给出更详细的描述。p-局部有限群中的主要新成分,以前没有,是它们的分类空间。我们的主要目标是理解这些空间的同伦类型。好处是双重的。首先,这些信息对于理解p-局部有限群之间的映射空间至关重要。这是p-局部有限群理论的一个最终目标,事实上,p-局部有限群的动机是为了理解有限群的p-完备分类空间之间的映射空间。其次,通过掌握p-局部有限群的分类空间的代数不变量,例如它的基本群,我们的目标是通过纯粹的组合过程从其分类空间中恢复p-局部有限群,而不是我们目前拥有的复杂的拓扑过程。这样的构造是可取的,因为它将使分类空间中的拓扑数据更容易被群论学家所理解。第一种方法是使用同伦分解。这种方法背后的哲学是通过将更简单的空间粘合在一起来近似所考虑的分类空间。然后分析分解中的每个组件和胶合信息。这一过程有很长的历史,但已知的方法不能应用于p-局部有限群。第二种方法是代数拓扑学中常用的方法,即研究空间的代数不变量。到目前为止,只知道p-局部有限群的分类空间的上同调环。我们的目标是介绍和研究更多的代数不变量,将反映在两个类别的组合学基本的p-本地有限group.Funds要求支付的费用全职研究助理24个月。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Segal's conjecture and the Burnside rings of fusion systems
西格尔猜想和聚变系统的伯恩赛德环
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Assaf Libman其他文献

Strong and uniform boundedness of groups
群的强且一致的有界性
The Burnside ring of fusion systems
  • DOI:
    10.1016/j.aim.2009.06.023
  • 发表时间:
    2009-12-20
  • 期刊:
  • 影响因子:
  • 作者:
    Antonio Díaz;Assaf Libman
  • 通讯作者:
    Assaf Libman
Polytopes associated with lattices of subsets and maximising expectation of random variables
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Assaf Libman
  • 通讯作者:
    Assaf Libman
Webb’s conjecture for fusion systems
  • DOI:
    10.1007/s11856-008-1044-8
  • 发表时间:
    2008-10-03
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Assaf Libman
  • 通讯作者:
    Assaf Libman
Orbit spaces, Quillen's Theorem A and Minami's formula for compact Lie groups
轨道空间、Quillen 定理 A 和紧李群的 Minami 公式
  • DOI:
    10.4064/fm213-2-2
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Assaf Libman
  • 通讯作者:
    Assaf Libman

Assaf Libman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
  • 批准号:
    2316253
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
  • 批准号:
    EP/X038424/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Research Grant
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
  • 批准号:
    2305373
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了