Regulation of Synaptonemal Complex Assembly During Meiosis in S. cerevisiae

酿酒酵母减数分裂过程中联会复合体组装的调控

基本信息

  • 批准号:
    7449855
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): At the start of meiosis, chromosomes initiate an extensive reorganization that culminates in aligned homologous chromosomes, joined along their lengths by synaptonemal complex (SC), and each capable of undergoing recombination with its partner. This process is critical for accurate chromosome segregation during gamete formation in sexually reproducing organisms. Despite over a century of observing meiotic chromosome pairing and synapsis in diverse organisms, the molecular mechanisms underlying fundamental meiotic chromosomal events are still unknown. How do homologous chromosomes identify one another? How is this initial recognition reinforced? How is homolog recognition coordinated with SC assembly, such that synapsis occurs specifically between paired chromosomes? I have begun to investigate these questions by screening for factors that regulate SC assembly in budding yeast. I identified roles for two factors in SC regulation. The FPR3 gene promotes the formation of polycomplexes in nuclei that are defective in homolog alignment. Polycomplexes are focal accumulations of SC components that reflect a failure in SC polymerization on chromosomes, and frequently occur in mutants with early meiotic defects in pairing or recombination. ZIPS, on the other hand, plays a role in preventing SC assembly on chromosomes. When polycomplex formation is compromised and ZIPS activity is missing, (as in a zipS fprS double mutant), SC components polymerize on chromosomes, independent of homolog alignment. Interestingly, the linear SC structures that arise in zipS fprS nuclei originate from centromere regions. As ZipS colocalizes with the SC structural component, Zip1, at centromere regions prior to homolog alignment, perhaps ZipS contributes to reinforcing homolog recognition by regulating SC assembly at centromeres. The experiments proposed use genetic, cytological and proteomic approaches to ask: How do FPRS and ZIPS regulate SC assembly? What is the molecular relationship between SC assembly, recombination and homolog pairing? The proposed research aims to understand basic cellular mechanisms that control meiotic chromosome processes that are conserved between yeast and mammals. As meiotic chromosome segregation defects lead to infertility and disorders such as Down's Syndrome, it is hoped that what is learned from my research may play a role in understanding, treating, and nurturing human reproductive health.
描述(由申请人提供):在减数分裂开始时,染色体开始广泛重组,最终形成对齐的同源染色体,通过联会复合体(SC)沿着其长度连接,并且每个染色体都能够与其配偶体重组。这一过程对于有性生殖生物配子形成过程中染色体的准确分离至关重要。尽管世纪来对不同生物体中减数分裂染色体配对和联会的观察,但基本减数分裂染色体事件的分子机制仍然未知。同源染色体如何相互识别?这种初步认识是如何得到加强的?同源物识别是如何与SC组装协调的,使得突触特异性地发生在成对的染色体之间?我已经开始调查这些问题,通过筛选因子,调节SC组装芽殖酵母。我确定了两个因素在SC调节中的作用。FPR3基因促进同源物比对缺陷的细胞核中多复合物的形成。多复合物是SC组分的焦点积累,反映了染色体上SC聚合的失败,并且经常发生在配对或重组中具有早期减数分裂缺陷的突变体中。另一方面,ZIPS在防止SC在染色体上组装中起作用。当多复合物形成受到损害并且ZIPS活性缺失时(如在zipS fprS双突变体中),SC组分在染色体上重叠,独立于同源物比对。有趣的是,在zipS fprS核中出现的线性SC结构起源于着丝粒区域。由于ZipS与SC结构组分Zip1在同源物比对之前在着丝粒区域共定位,也许ZipS有助于通过调节SC在着丝粒的组装来加强同源物识别。提出的实验使用遗传学,细胞学和蛋白质组学的方法来问:FPRS和ZIPS如何调节SC组装?SC组装、重组和同源配对之间的分子关系是什么?拟议的研究旨在了解控制酵母和哺乳动物之间保守的减数分裂染色体过程的基本细胞机制。由于减数分裂染色体分离缺陷会导致不育和唐氏综合症等疾病,因此希望从我的研究中学到的东西可以在理解,治疗和培养人类生殖健康方面发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Joy MacQueen其他文献

Amy Joy MacQueen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Joy MacQueen', 18)}}的其他基金

How do Synaptonemal Complex Proteins Mediate the Coordinated Processes of Crossover Recombination and Synapsis?
联会复合蛋白如何介导交叉重组和联会的协调过程?
  • 批准号:
    9813290
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
How Do Synaptonemal Complex Proteins Promote Crossover Recombination and Synapsis?
联会复合蛋白如何促进交叉重组和联会?
  • 批准号:
    10515002
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
How do Synaptonemal Complex Proteins Mediate Class I Crossover Formation?
联会复合蛋白如何介导 I 类交叉形成?
  • 批准号:
    8958532
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
Structure and Dynamics of the Synaptonemal Complex
联会复合体的结构和动力学
  • 批准号:
    8575009
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
Regulation of Synaptonemal Complex Assembly During Meiosis in S. cerevisiae
酿酒酵母减数分裂过程中联会复合体组装的调控
  • 批准号:
    7847932
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
Regulation of Synaptonemal Complex Assembly During Meiosis in S. cerevisiae
酿酒酵母减数分裂过程中联会复合体组装的调控
  • 批准号:
    7919426
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
Regulation of Synaptonemal Complex Assembly During Meiosis in S. cerevisiae
酿酒酵母减数分裂过程中联会复合体组装的调控
  • 批准号:
    7595056
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
Regulation of Synaptonemal Complex Assembly During Meiosis in S. cerevisiae
酿酒酵母减数分裂过程中联会复合体组装的调控
  • 批准号:
    8133848
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了