Noninvasive 3D Microscopic Studies of Corneal Elasticity and Collagen Structure

角膜弹性和胶原蛋白结构的无创 3D 显微镜研究

基本信息

  • 批准号:
    7527741
  • 负责人:
  • 金额:
    $ 39.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-30 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Corneal biomechanics plays an important role in determining the eye's structural integrity, optical power and the overall quality of vision. Common conditions that manifest abnormal corneal biomechanics, such as keratoconus and post-LASIK ectasia affect millions of people and often necessitate corneal transplantation. Corneal biomechanics also plays an increasingly recognized role in the post-operative results of therapeutic and refractive corneal surgery procedures, affecting the predictability, quality and stability of final visual outcomes. A critical limitation to increasing our understanding of how corneal biomechanics controls corneal stability and refraction is the lack of non-invasive technologies that microscopically measure the corneal structure and local biomechanical properties, such as corneal elasticity within the 3D space. We hypothesize that by measuring the movement of a femtosecond laser generated cavitation bubble as it interacts with an acoustic radiation force, we can determine local values for an individual cornea's Young's modulus, without altering its structure and function. We also hypothesize that the inhomogeneous elastic properties of the cornea are strongly influenced by the microstructural organization of collagen lamellae, and that corneas with abnormal biomechanics also may be associated with an abnormal organization of corneal lamellae. Finally, we hypothesize that based on the elasticity and microstructural data for a particular cornea, a specific finite element model (FEM) can be constructed that accurately describes and predicts its biomechanical behavior. To test our hypothesis we plan to develop a bubble-based, acoustic radiation force elastic microscope (ARFEM) and show that it can be used noninvasively to develop a high resolution 3D corneal elasticity map. We will then correlate local variations in corneal elasticity with the microstructure observed by femtosecond laser based second harmonic imaging microscopy (SHIM). We will also investigate biomechanically disordered corneas with both, ARFEM and SHIM, and correlate their elasticity maps with microstructural observations. We will construct a FEM based on the measured ARFEM and SHIM data and show that this model accurately predicts biomechanical behavior for a particular cornea. Finally we will demonstrate in a live rabbit model, that both, ARFEM and SHIM can be performed safely in vivo without tissue damage or harmful effects to the eye. The successful completion of this project will provide experimental evidence that corneal elasticity maps and microstructure can be measured in vivo noninvasively. It will also provide support for the theory that corneal elasticity is influenced by the collagen microstructure, and that the biomechanical behavior of a cornea characterized by ARFEM and SHIM can be accurately predicted by individualized finite element modeling. The results of this project will increase our understanding of corneal biomechanics and its dependence on collagen microstructure and may provide the basis for a novel tool that could be helpful in diagnosing, preventing or treating increasingly common corneal diseases such as keratoconus and post-LASIK ectasia. PUBLIC HEALTH RELEVANCE: We introduce novel noninvasive methods to define spatial distribution of elastic properties and collagen microstructure of individual corneas. The correlation of these functional and structural measurements in healthy eyes will be compared with those that either have common corneal disorders (such as keratoconus and post-LASIK ectasia), or are at risk for them. The results of this project will improve our understanding of corneal biomechanics and its dependence on the collagen microstructure, providing a basis for novel diagnostic instruments and eventual therapeutic modalities for the millions of people that are at risk for severe visual loss from these conditions.
描述(由申请人提供):角膜生物力学在决定眼睛的结构完整性、光焦度和整体视觉质量方面起着重要作用。表现出异常角膜生物力学的常见病症,例如圆锥角膜和LASIK术后扩张,影响数百万人,并且通常需要角膜移植。角膜生物力学在治疗性和屈光性角膜手术的术后结果中也发挥着越来越多的作用,影响最终视力结果的可预测性、质量和稳定性。增加我们对角膜生物力学如何控制角膜稳定性和屈光的理解的一个关键限制是缺乏显微镜测量角膜结构和局部生物力学特性(例如3D空间内的角膜弹性)的非侵入性技术。我们假设,通过测量飞秒激光产生的空化泡的运动,因为它与声辐射力相互作用,我们可以确定局部值为个人角膜的杨氏模量,而不改变其结构和功能。我们还假设角膜的不均匀弹性特性受到胶原层的微观结构组织的强烈影响,并且具有异常生物力学的角膜也可能与角膜层的异常组织相关。最后,我们假设,基于特定角膜的弹性和微观结构数据,可以构建一个特定的有限元模型(FEM),准确地描述和预测其生物力学行为。为了验证我们的假设,我们计划开发一种基于气泡的声辐射力弹性显微镜(ARFEM),并表明它可以无创地用于开发高分辨率的3D角膜弹性图。然后,我们将角膜弹性的局部变化与基于飞秒激光的二次谐波成像显微镜(SHIM)观察到的微观结构相关联。我们还将研究生物力学紊乱的角膜,ARFEM和SHIM,并将其弹性图与显微结构观察相关联。我们将构建一个基于测量的ARFEM和SHIM数据的有限元模型,并表明该模型可以准确预测特定角膜的生物力学行为。最后,我们将在活兔模型中证明,ARFEM和SHIM都可以在体内安全地进行,而不会对眼睛造成组织损伤或有害影响。该项目的成功完成将为角膜弹性图和显微结构的活体非侵入性测量提供实验依据。这也将为角膜弹性受胶原微结构影响的理论提供支持,并且可以通过个性化有限元建模准确预测ARFEM和SHIM表征的角膜的生物力学行为。该项目的结果将增加我们对角膜生物力学及其对胶原微结构的依赖性的理解,并可能为有助于诊断,预防或治疗日益常见的角膜疾病(如圆锥角膜和LASIK术后扩张)的新工具提供基础。公共卫生相关性:我们介绍了新的非侵入性方法来确定空间分布的弹性特性和胶原蛋白的微观结构的个人角膜。将健康眼睛中这些功能和结构测量的相关性与那些患有常见角膜疾病(如圆锥角膜和LASIK术后扩张)或有风险的眼睛进行比较。该项目的结果将提高我们对角膜生物力学及其对胶原微结构的依赖性的理解,为数百万有严重视力丧失风险的人提供新型诊断仪器和最终治疗方式的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIBOR JUHASZ其他文献

TIBOR JUHASZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIBOR JUHASZ', 18)}}的其他基金

Non-Invasive Femtosecond Laser Glaucoma Surgery Guided by Micron-Resolution OCT
微米分辨率OCT引导的无创飞秒激光青光眼手术
  • 批准号:
    10222703
  • 财政年份:
    2019
  • 资助金额:
    $ 39.44万
  • 项目类别:
Non-Invasive Femtosecond Laser Glaucoma Surgery Guided by Micron-Resolution OCT
微米分辨率OCT引导的无创飞秒激光青光眼手术
  • 批准号:
    10434788
  • 财政年份:
    2019
  • 资助金额:
    $ 39.44万
  • 项目类别:
Noninvasive 3D Microscopic Studies of Corneal Elasticity and Collagen Structure
角膜弹性和胶原蛋白结构的无创 3D 显微镜研究
  • 批准号:
    8142790
  • 财政年份:
    2008
  • 资助金额:
    $ 39.44万
  • 项目类别:
Noninvasive 3D Microscopic Studies of Corneal Elasticity and Collagen Structure
角膜弹性和胶原蛋白结构的无创 3D 显微镜研究
  • 批准号:
    7923862
  • 财政年份:
    2008
  • 资助金额:
    $ 39.44万
  • 项目类别:
Noninvasive 3D Microscopic Studies of Corneal Elasticity and Collagen Structure
角膜弹性和胶原蛋白结构的无创 3D 显微镜研究
  • 批准号:
    7691722
  • 财政年份:
    2008
  • 资助金额:
    $ 39.44万
  • 项目类别:
Femtosecond Laser Enhanced Aqueous Outflow Facility
飞秒激光增强水流出设施
  • 批准号:
    6684621
  • 财政年份:
    2003
  • 资助金额:
    $ 39.44万
  • 项目类别:
Femtosecond Laser Enhanced Aqueous Outflow Facility
飞秒激光增强水流出设施
  • 批准号:
    6784555
  • 财政年份:
    2003
  • 资助金额:
    $ 39.44万
  • 项目类别:
Femtosecond Laser Posterior Lamellar Keratoplasty
飞秒激光后板层角膜移植术
  • 批准号:
    6611694
  • 财政年份:
    2003
  • 资助金额:
    $ 39.44万
  • 项目类别:
Femtosecond Laser Enhanced Aqueous Outflow Facility
飞秒激光增强水流出设施
  • 批准号:
    7128352
  • 财政年份:
    2003
  • 资助金额:
    $ 39.44万
  • 项目类别:
Femtosecond Laser Posterior Lamellar Keratoplasty
飞秒激光后板层角膜移植术
  • 批准号:
    6791278
  • 财政年份:
    2003
  • 资助金额:
    $ 39.44万
  • 项目类别:

相似海外基金

Next Generation Quantitative Acoustic Microscopy for Biomedical Application
用于生物医学应用的下一代定量声学显微镜
  • 批准号:
    10445570
  • 财政年份:
    2022
  • 资助金额:
    $ 39.44万
  • 项目类别:
Next Generation Quantitative Acoustic Microscopy for Biomedical Application
用于生物医学应用的下一代定量声学显微镜
  • 批准号:
    10707063
  • 财政年份:
    2022
  • 资助金额:
    $ 39.44万
  • 项目类别:
Evaluation of the brain tumor elasticity by using Magnetic Resonance Elastography and Scanning Acoustic Microscopy
磁共振弹性成像和扫描声学显微镜评估脑肿瘤弹性
  • 批准号:
    17K10889
  • 财政年份:
    2017
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scalable Acoustic Microscopy for Pharmaceutical Applications
适用于制药应用的可扩展声学显微镜
  • 批准号:
    522773-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Engage Grants Program
Developement of improved imaging techniques and new, structured, high frequency ultrasound transducers for the acoustic microscopy
开发改进的成像技术和用于声学显微镜的新型结构化高频超声换能器
  • 批准号:
    283865772
  • 财政年份:
    2015
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Research Grants
Imaging of tissue aging by scanning acoustic microscopy
通过扫描声学显微镜对组织老化进行成像
  • 批准号:
    15K08375
  • 财政年份:
    2015
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Acoustic Properties of G1 and G2 phase MCF-7 Cells by Acoustic Microscopy
声学显微镜分析 G1 和 G2 期 MCF-7 细胞的声学特性
  • 批准号:
    433046-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 39.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Acoustic microscopy for the measurment of the mechanical properties of breast cancer cell
用于测量乳腺癌细胞机械特性的声学显微镜
  • 批准号:
    384695-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 39.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanoscale properties of acive polymer/organic-based electronic components by atomic force acoustic microscopy
通过原子力声学显微镜研究活性聚合物/有机基电子元件的纳米级特性
  • 批准号:
    85563093
  • 财政年份:
    2009
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Research Grants
The elastic properties of maxillofacial and oral region assessed by scanning acoustic microscopy
扫描声学显微镜评估颌面和口腔区域的弹性特性
  • 批准号:
    21791875
  • 财政年份:
    2009
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了