System Dynamics from Individual Interactions: A process algebra approach to epidemiology

个体相互作用的系统动力学:流行病学的过程代数方法

基本信息

  • 批准号:
    EP/E006280/1
  • 负责人:
  • 金额:
    $ 43.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Disease can be viewed as a threat or as a tool. Modern society has become vulnerable to wide spreading epidemics, but we also use diseases to control pests in crops as a way of avoiding the use of chemicals. Clearly it is important to be able to understand the way the epidemic works: How much of the population will be infected? Does the behaviour of individuals change the spread of the disease? How long will it take before the disease dies out? What is the most effective way to control the disease?Testing experimentally is not an option: there are ethical problems with infecting people with diseases just to see what happens, therefore we use mathematical models. These help us predict the shape of epidemics and to evaluate methods of control. In this project theoretical computer science techniques known as process algebras will be used to model diseases. The unique benefits of this approach are threefold. Firstly, it is possible to describe the behaviour of individuals directly. Secondly, those individuals can be rigorously combined to give the behaviour of the system as a whole. Thirdly, the system can be formally investigated to establish features of the system dynamics, allowing us to answer the sort of questions posed above. This approach, known as individual-based, is particularly important because in reality we can measure facts about individuals, but our questions about epidemics all come from the population level. The ability to move rigorously between different levels of abstraction (individual to population) when describing disease spread gives us completely new ways of thinking about epidemiology.Our group is the foremost in the world in this work, but we are at the start of a long term research programme. Having built up domain expertise and techniques and tools for describing and investigating simple disease systems in previous work, we are now in a position to consider more complex epidemiological phenomena, the particular modelling features required for these, and further methods of investigation.In this project we will build and investigate process algebra models of specific biological features associated with epidemiology. These are: fluctuating populations (Adding births and deaths), interaction and transmission (If I sneeze on you, will you get my flu? What about the others in the room?), control (How many of the population need to be vaccinated to protect the whole population from the disease?), and contest between individuals (If I don't have enough food will that make me more susceptible to disease?). These features have been chosen as core to the representation of population and epidemiological models and together give a more realistic and rounded model of disease.Exploration of more complex biological systems will require more complex models. Process algebra is expressive enough to describe these systems; however, such descriptions may be clumsy and hard to understand. We will develop new language constructs to allow population models to be more simply expressed, yielding more easily constructed and understood models. Once the model is constructed we have a range of formal techniques to investigate its behaviour, and to compare with other existing models in the literature. We will develop those investigative techniques further, based on the needs of epidemiological systems.Finally, although we will concentrate on epidemiology, the features and techniques developed will be applicable to other areas of biology, and to computer science. For example, instead of viewing an individual as a person or an animal, we could view an individual as a single cell or a complex molecule. In the computer science arena, we can use epidemiological models to think about performance modelling, and also malware (computer viruses, worms etc). This general applicability makes our work particularly exciting.
疾病可以被视为一种威胁,也可以被视为一种工具。现代社会已经变得容易受到广泛传播的流行病的影响,但我们也使用疾病来控制作物中的害虫,以避免使用化学品。显然,能够理解这一流行病的运作方式是很重要的:有多少人口将被感染?个人的行为会改变疾病的传播吗?这种病要多久才会消失?控制这种疾病最有效的方法是什么?实验测试不是一种选择:让人们感染疾病只是为了看看会发生什么,这存在伦理问题,因此我们使用数学模型。这些帮助我们预测流行病的形式和评估控制方法。在这个项目中,被称为过程代数的理论计算机科学技术将被用来模拟疾病。这种方法的独特好处有三方面。首先,可以直接描述个人的行为。第二,这些个体可以被严格地组合起来,以给出整个系统的行为。第三,可以对系统进行形式上的研究,以建立系统动力学的特征,从而使我们能够回答上面提出的这类问题。这种方法被称为基于个体的方法,特别重要,因为在现实中我们可以衡量关于个体的事实,但我们关于流行病的问题都来自于人口水平。在描述疾病传播时,能够在不同的抽象层次(从个体到人群)之间严格移动,这给了我们全新的流行病学思维方式。我们的团队在这项工作中处于世界领先地位,但我们正处于长期研究计划的开始阶段。在以前的工作中,我们已经建立了描述和研究简单疾病系统的领域专业知识和技术和工具,现在我们可以考虑更复杂的流行病学现象,这些现象所需的特定建模功能,以及进一步的调查方法。这些是:波动的人口(增加出生和死亡),相互作用和传播(如果我对你打喷嚏,你会得到我的流感?)房间里的其他人呢?)控制(有多少人口需要接种疫苗,以保护整个人口免受疾病?),以及个体之间的竞争(如果我没有足够的食物,会不会让我更容易生病?)。这些特征已被选为人口和流行病学模型的核心表示,并共同给出了一个更现实和全面的疾病模型。探索更复杂的生物系统将需要更复杂的模型。进程代数足以描述这些系统;然而,这样的描述可能是笨拙的,难以理解的。我们将开发新的语言结构,使人口模型更简单地表达,产生更容易构建和理解的模型。一旦模型构建,我们有一系列的正式技术来调查其行为,并与其他现有的模型在文献中进行比较。我们将根据流行病学系统的需要进一步发展这些调查技术。最后,虽然我们将集中在流行病学上,但所开发的功能和技术将适用于生物学的其他领域和计算机科学。例如,我们可以将个体视为单个细胞或复杂分子,而不是将个体视为人或动物。在计算机科学竞技场中,我们可以使用流行病学模型来考虑性能建模,以及恶意软件(计算机病毒,蠕虫等)。这种普遍适用性使我们的工作特别令人兴奋。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algebraic Biology
代数生物学
  • DOI:
    10.1007/978-3-540-85101-1_11
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McCaig C
  • 通讯作者:
    McCaig C
Using process algebra to develop predator-prey models of within-host parasite dynamics.
使用过程代数开发宿主内寄生虫动力学的捕食者-被捕食者模型。
FM 2012: Formal Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceedings
FM 2012:形式化方法 - 第 18 届国际研讨会,法国巴黎,2012 年 8 月 27-31 日。会议记录
  • DOI:
    10.1007/978-3-642-32759-9_11
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benkirane S
  • 通讯作者:
    Benkirane S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carron Shankland其他文献

From individuals to populations: A mean field semantics for process algebra
  • DOI:
    10.1016/j.tcs.2010.09.024
  • 发表时间:
    2011-04-08
  • 期刊:
  • 影响因子:
  • 作者:
    Chris McCaig;Rachel Norman;Carron Shankland
  • 通讯作者:
    Carron Shankland
A Symbolic Investigation of Superspreaders
  • DOI:
    10.1007/s11538-010-9603-7
  • 发表时间:
    2010-12-23
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Chris McCaig;Mike Begon;Rachel Norman;Carron Shankland
  • 通讯作者:
    Carron Shankland
From Individuals to Populations: A Symbolic Process Algebra Approach to Epidemiology
  • DOI:
    10.1007/s11786-008-0066-2
  • 发表时间:
    2009-03-05
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Chris McCaig;Rachel Norman;Carron Shankland
  • 通讯作者:
    Carron Shankland

Carron Shankland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carron Shankland', 18)}}的其他基金

Improving patient outcome by integrating the generic with the personal
通过将通用药物与个人药物相结合来改善患者的治疗效果
  • 批准号:
    EP/K039342/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Research Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Research Grant
Individual fitness, directional dispersal, and the dynamics of trailing-edge populations
个体适应度、定向扩散和后缘种群动态
  • 批准号:
    2319642
  • 财政年份:
    2023
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Continuing Grant
IHBEM: Modeling the influence of individual and network behavior on HIV/HCV transmission dynamics
IHBEM:模拟个人和网络行为对 HIV/HCV 传播动态的影响
  • 批准号:
    2327751
  • 财政年份:
    2023
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Continuing Grant
Discovering the perceptual and cognitive factors that influence human behavioural dynamics during collision avoidance with another individual
发现在避免与另一个人碰撞过程中影响人类行为动态的感知和认知因素
  • 批准号:
    547946-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Advancing Genomic Technologies to Combat Infectious Disease: Mapping Dynamics within Single Cells, Individual Hosts, and Global Populations
推进基因组技术对抗传染病:绘制单细胞、个体宿主和全球人群的动态图
  • 批准号:
    10641432
  • 财政年份:
    2022
  • 资助金额:
    $ 43.77万
  • 项目类别:
Emotion as a dynamic system: Individual dynamics and population heterogeneity
情感作为一个动态系统:个体动态和群体异质性
  • 批准号:
    RGPIN-2020-04458
  • 财政年份:
    2022
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Discovery Grants Program - Individual
Secret Power: Investigating the Legitimization of Criminal Governance: Group Comparisons and Within-Individual Dynamics
秘密权力:探讨刑事治理的合法性:群体比较和个体内部动态
  • 批准号:
    EP/X02170X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Research Grant
Linking space use, individual fitness, and population dynamics to quantify the conservation value of geographic areas
将空间利用、个体健康度和种群动态联系起来,量化地理区域的保护价值
  • 批准号:
    RGPIN-2017-03867
  • 财政年份:
    2022
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Discovery Grants Program - Individual
RII Track 4: Metrology and spectroscopy of individual nanomagnets dynamics using quantum sensor-based (NV- center) nano-magnetometry
RII 轨道 4:使用基于量子传感器(NV 中心)纳米磁力测量的单个纳米磁体动力学的计量学和光谱学
  • 批准号:
    2033210
  • 财政年份:
    2021
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Standard Grant
Dynamics of Mesoscopic Systems Developed with a Tunable Individual Particle Model System
使用可调谐单个粒子模型系统开发的介观系统动力学
  • 批准号:
    2103704
  • 财政年份:
    2021
  • 资助金额:
    $ 43.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了