Methylerythritol Phosphate Pathway-Specific Natural Products as Antibacterials

甲基赤藓糖醇磷酸酯途径特异性天然产物作为抗菌剂

基本信息

  • 批准号:
    7479564
  • 负责人:
  • 金额:
    $ 29.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term objective of this project is to identify a new class of antibiotics targeting the methylerythritol phosphate (MEP) pathway, a novel pathway essential for the viability of all Gram-negative and many Gram- positive bacteria. Gram-negative bacteria are responsible for more than half of hospital acquired (nosocomial) infections which cost an estimated $5 billion dollars per year with >60% caused by resistant bacteria. Every bacterial pathogen (Gram-negative and Gram-positive) described by the CDC and NIAID as Category A, B or C biological agents require the MEP pathway for survival. The overuse/misuse of many antibiotics has resulted in a concurrent rise in resistance to dangerous levels. Additionally, several nations are known or suspected to have developed bacterial agents for use in a biological attack with some of these agents engineered to be antibiotic resistant. Future generations of existing antibiotics are expected to have shorter periods of utility than an entirely new class as bacteria will not have been subjected to selective pressure leading to resistance. The ability to engineer resistance to as of yet unknown antibiotics is also unlikely. The MEP pathway for isoprenoid biosynthesis represents a novel target for developing antibiotics with greater potential for increased utility over existing antibiotic classes. Isoprenoid biosynthesis is an essential process of all living organisms. Representing one of the most diverse classes of natural products, isoprenoids range in size from ten-carbon monoterpenes to natural rubber (molecular weight 1.5 million), yet they are constructed from two five-carbon precursors: isopententyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). For the biosynthesis of IPP and DMAPP, humans use the mevalonate (MVA) pathway while all Gram-negative and many Gram-positive bacteria require the unrelated MEP pathway. This natural pathway distribution and a dearth of agents specifically targeting the MEP pathway make it an ideal new target for antibacterials. Only one compound targeting the MEP pathway has undergone clinical evaluation. Therefore, any chemical entity targeting this pathway represents an entirely new class of antibiotics. Echelon Biosciences will utilize a novel, proprietary whole-cell screening platform to identify natural products that specifically target the MEP pathway which could potentially lead to compounds as pre-clinical development candidates. This will be accomplished by the following aims. First, in vitro biochemical assays to determine mechanism of action for the last steps in the pathway will be completed; Second, a natural product library will be screened for MEP pathway inhibitors using a modification of a validated screening platform; Third, characterizing the inhibition observed as a result of hits; Fourth, synthesizing fragment-based libraries of compounds around natural products identified in the screen. PUBLIC HEALTH RELEVANCE: Resistance of bacteria to current therapeutics is of paramount importance in community and hospital settings as well as for biodefense. This project will identify natural products specifically blocking a novel bacterial pathway not found in humans. The pathway is not the target of any currently prescribed therapeutic, therefore these compounds and their derivatives are expected to have prolonged utility relative to subsequent generations of antibiotics presently in use.
描述(由申请人提供):本项目的长期目标是鉴定一类靶向甲基异丙基磷酸(MEP)途径的新型抗生素,这是一种对所有革兰氏阴性菌和许多革兰氏阳性菌的活力至关重要的新途径。革兰氏阴性细菌是造成超过一半的医院获得性(医院内)感染的原因,这些感染每年花费估计50亿美元,其中>60%由耐药细菌引起。由CDC和NIAID描述为A类、B类或C类生物制剂的每种细菌病原体(革兰氏阴性和革兰氏阳性)都需要MEP途径来存活。许多抗生素的过度使用/滥用导致了对危险水平的耐药性的同时上升。此外,已知或怀疑有几个国家已经开发出用于生物攻击的细菌制剂,其中一些制剂被设计成具有抗生素抗性。预计未来几代现有抗生素的使用期限将比全新的抗生素更短,因为细菌不会受到导致耐药性的选择压力。对未知抗生素的工程抗性能力也不太可能。类异戊二烯生物合成的MEP途径代表了开发抗生素的新靶点,其具有比现有抗生素类别更大的增加效用的潜力。类异戊二烯生物合成是所有生物体的基本过程。类异戊二烯是最多样化的天然产物之一,其大小从十碳单萜到天然橡胶(分子量150万)不等,但它们由两种五碳前体构成:异戊烯基二磷酸(IPP)和二甲基烯丙基二磷酸(DMAPP)。对于IPP和DMAPP的生物合成,人类使用甲羟戊酸(MVA)途径,而所有革兰氏阴性和许多革兰氏阳性细菌需要不相关的MEP途径。这种天然途径分布和缺乏特异性靶向MEP途径的药物使其成为抗菌药物的理想新靶点。只有一种靶向MEP途径的化合物经历了临床评价。因此,任何靶向这一途径的化学实体都代表了一类全新的抗生素。Echelon Biosciences将利用一种新型的专有全细胞筛选平台来鉴定特异性靶向MEP途径的天然产物,这些天然产物可能导致化合物成为临床前开发候选物。这将通过以下目标来实现。首先,将完成体外生物化学测定,以确定该途径中最后步骤的作用机制;其次,将使用经验证的筛选平台的修改来筛选MEP途径抑制剂的天然产物库;第三,表征作为命中结果观察到的抑制;第四,围绕筛选中鉴定的天然产物合成基于片段的化合物库。 公共卫生关系:细菌对当前疗法的抗性在社区和医院环境以及生物防御中至关重要。该项目将鉴定天然产物,特异性地阻断一种在人类中未发现的新型细菌途径。该途径不是任何目前处方的治疗剂的靶点,因此这些化合物及其衍生物相对于目前使用的后续几代抗生素预期具有延长的效用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Testa其他文献

Charles Testa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Testa', 18)}}的其他基金

A new class of broad-spectrum antibacterials for treating MDR infections
用于治疗耐多药感染的新型广谱抗菌药物
  • 批准号:
    10382405
  • 财政年份:
    2020
  • 资助金额:
    $ 29.25万
  • 项目类别:
A new class of broad-spectrum antibacterials for treating MDR infections
用于治疗耐多药感染的新型广谱抗菌药物
  • 批准号:
    10009800
  • 财政年份:
    2020
  • 资助金额:
    $ 29.25万
  • 项目类别:
Broad spectrum antibacterials selectively targeting an un-drugged site on the ribosome
选择性靶向核糖体上未药物位点的广谱抗菌药物
  • 批准号:
    10179307
  • 财政年份:
    2017
  • 资助金额:
    $ 29.25万
  • 项目类别:
Methylerythritol Phosphate Pathway Inhibitors Targeting Gram-Negative Infections
针对革兰氏阴性菌感染的甲基赤藓糖醇磷酸酯途径抑制剂
  • 批准号:
    7613435
  • 财政年份:
    2008
  • 资助金额:
    $ 29.25万
  • 项目类别:
Methylerythritol Phosphate Pathway-Specific Natural Products as Antibacterials
甲基赤藓糖醇磷酸酯途径特异性天然产物作为抗菌剂
  • 批准号:
    7560334
  • 财政年份:
    2008
  • 资助金额:
    $ 29.25万
  • 项目类别:
Methylerythritol Phosphate Pathway Inhibitors Targeting Gram-Negative Infections
针对革兰氏阴性菌感染的甲基赤藓糖醇磷酸酯途径抑制剂
  • 批准号:
    7405052
  • 财政年份:
    2008
  • 资助金额:
    $ 29.25万
  • 项目类别:

相似海外基金

New technologies for targeted delivery of anti-bacterial agents
抗菌药物靶向递送新技术
  • 批准号:
    1654774
  • 财政年份:
    2015
  • 资助金额:
    $ 29.25万
  • 项目类别:
    Studentship
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
  • 批准号:
    8416313
  • 财政年份:
    2012
  • 资助金额:
    $ 29.25万
  • 项目类别:
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
  • 批准号:
    8298885
  • 财政年份:
    2012
  • 资助金额:
    $ 29.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了