Intensified Integrated Bio-Refinery

强化综合生物炼制

基本信息

  • 批准号:
    EP/E010784/1
  • 负责人:
  • 金额:
    $ 1.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.
最重要和最紧迫的全球问题是建立可持续的能源和化学品原料技术,以取代相应的基于化石燃料的技术,从而实现大幅减少大气中的温室气体。这项艰巨的任务只有在我们以废物或能源作物的形式利用生物质的情况下才有可能,因为未利用的生物质将会降解,并仍会产生温室气体。就可获得性而言,全球生产的生物质的能源当量约为全球能源总需求量的8倍。然而,与化石燃料不同的是,生物质广泛分布在人口中心附近。因此,生物质物流听起来可能是不利的,因为将其收集起来在中央(现有)大型设施进行转换并不经济。由于生物质本身的产品(电力或运输燃料)将不得不分配,生物质物流实际上是一种优势,前提是我们解决了“规模经济”问题;也就是说,使用容量非常大的工厂进行加工更具成本效益。这一缺陷可以通过采用两个新的技术概念来弥补:过程集成和过程强化。一体化将为我们提供能源和资源效率,而集约化将消除“规模经济”,因为集约化降低了资本和运营成本(由于工厂规模的大幅减少)、安全性、响应性和社会可接受性。与炼油厂的概念类似,生物质可以转化为高价值的(治疗)化学品,剩余的生物质通过发酵过程转化为生物乙醇,残渣被气化得到合成气。生物乙醇是一种用途广泛的化学品,可用作液体运输燃料、化学储氢手段或用作塑料或药物等高级化学品的化学中间体。强化因素将出现在每个层面,包括提取过程。通过发酵生产生物乙醇是一种众所周知的方法,但将通过使用遗传增强细菌来加强生物乙醇生产,并将结果与野生型进行比较。转基因细菌将被控制在特殊的反应器内,生理应激将被控制在微观尺度上,从而进一步提高发酵生产率。因此,这种技术可以应用于其他生物转化,如药物。生物质废物,如城市固体废物、污水污泥或农业残渣,也可以通过气化直接转化为生物乙醇,气化产生的合成气必须进行清洁,其成分应受到控制,必要时应将气体分离成其组分(氢、一氧化碳、甲烷、二氧化碳),以便它们可用作氨、乙醇和甲醇等较大分子的化学构件。或者,合成气可以用作内燃机或燃料电池发电的燃料。这些操作应在高温下进行,以提高效率。合成气到电力/更高级化学品的转化也需要催化反应。然而,合成气本质上是一种“脏”燃料,必须从焦油、有毒成分和颗粒物中清除。我们将制备新型的强化高温催化剂,其中催化位置可以通过一个孔网络来访问,就像自然界中的肺和肾一样。生物乙醇不仅是一种很好的汽车燃料,也是一种很好的氢气储存材料,它可以转化为其他化学品,如商品塑料,即聚乙烯。对生物乙醇作为中间体的应用进行了论证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Pink其他文献

Probing the particle formation and aggregation behaviour of gliadin in aqueous ethanol with ultra-small- and small-angle X-ray scattering
用超小角和小角 X 射线散射探测醇水体系中麦醇溶蛋白的颗粒形成和聚集行为
  • DOI:
    10.1016/j.foodhyd.2025.111536
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Katherine Petker;Fernanda Peyronel;David Pink;Iris J. Joye
  • 通讯作者:
    Iris J. Joye

David Pink的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Pink', 18)}}的其他基金

Adding Value to the UK Brassica Crop Science Community (AdVAB)
为英国芸苔属作物科学界 (AdVAB) 增加价值
  • 批准号:
    BB/E006892/1
  • 财政年份:
    2007
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Research Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Bio-Electronic Integrated Devices for Healthcare Applications (BIOTRONICA)
用于医疗保健应用的生物电子集成设备(BIOTRONICA)
  • 批准号:
    EP/Y032535/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Research Grant
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
  • 批准号:
    10066963
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    EU-Funded
UPSTREAM: Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
上游:结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
  • 批准号:
    10089056
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    EU-Funded
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
  • 批准号:
    10066959
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    EU-Funded
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
  • 批准号:
    10082527
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    EU-Funded
FMSG: Bio: Integrated bioprocess and synthetic biology for future biomanufacturing of industrial products
FMSG:生物:用于未来工业产品生物制造的综合生物过程和合成生物学
  • 批准号:
    2328215
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Standard Grant
BRC-BIO: Flexible traits and functional trade-offs: an integrated analysis of gastrointestinal plasticity in mammals
BRC-BIO:灵活的性状和功能权衡:哺乳动物胃肠道可塑性的综合分析
  • 批准号:
    2233467
  • 财政年份:
    2023
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Standard Grant
Developing an integrated analytical platform for evaluating the role of forest biorefineries in achieving a sustainable circular bio-based economy
开发综合分析平台,用于评估森林生物精炼厂在实现可持续循环生物经济中的作用
  • 批准号:
    576235-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Integrated Biorefinery for Conversion of Crop Residues into Bio-based Polymers
将作物残渣转化为生物基聚合物的综合生物精炼厂
  • 批准号:
    RGPIN-2019-05159
  • 财政年份:
    2022
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-Inspired Integrated Vision System Based on the Continuous Valued Number System
基于连续值数系统的仿生集成视觉系统
  • 批准号:
    RGPIN-2019-06890
  • 财政年份:
    2022
  • 资助金额:
    $ 1.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了