Intensified Integrated Bio-Refinery
强化综合生物炼制
基本信息
- 批准号:EP/E012299/1
- 负责人:
- 金额:$ 12.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.
最重要和最紧迫的全球性问题是建立可持续的能源和化学品原料技术,以取代相应的化石燃料为基础的技术,从而实现大气温室气体的大幅减少。这项艰巨的任务只有在我们以废物或能源作物的形式利用生物质时才有可能,因为未利用的生物质会降解并产生温室气体。在供应方面,全球生产的生物量的能源当量约为全球能源需求总量的8倍。然而,与化石燃料不同,生物质广泛分布在人口中心附近。因此,生物质物流可能听起来是不利的,因为它们在中央(现有)大规模设施处收集用于转化将是不经济的。由于生物质本身的产品(电力或运输燃料)必须分配,生物质物流实际上是一个优势,只要我们解决“规模经济”的问题;也就是说,使用非常大容量的工厂进行加工更具成本效益。通过采用两种新的技术概念来弥补这一缺陷:过程集成和过程强化。集成将为我们提供能源和资源效率,而集约化将消除“规模经济”,因为集约化可以降低资本和运营成本(由于工厂规模大幅缩小),安全性,响应能力和社会可接受性。与炼油厂的概念类似,生物质可以转化为高价值(治疗)化学品,剩余的残余生物质通过发酵过程转化为生物乙醇,残余物被气化以获得合成气。生物乙醇是一种用途非常广泛的化学品,可用作液体运输燃料,作为化学储氢手段或作为塑料或药物等高级化学品的化学中间体。强化元素将出现在每一级,包括提取过程。通过发酵生产生物乙醇是一种众所周知的途径,但它将通过使用基因增强的细菌来加强,并将结果与野生型进行比较。遗传增强的细菌将被包含在特殊的反应器中,并且生理应激将在微观尺度上被控制,这导致发酵生产力的进一步增强。因此,这种技术可以应用于其他生物转化,如药物。诸如城市固体废物、污水污泥或农业残留物的生物质废物也可以经由气化直接转化为生物乙醇,气化产生合成气,合成气必须被清洁并且其组成应该被控制,并且在必要时气体应该被分离成其组分(氢、一氧化碳、甲烷、二氧化碳),因此它们可以用作较大分子(如氨)的化学构件,乙醇和甲醇。或者,合成气可用作内燃机或燃料电池的燃料以发电。这些操作应在高温下进行,以提高效率。合成气转化为动力/更高级的化学品也需要催化反应。然而,合成气本质上是一种“脏”燃料,必须从焦油、有毒成分和颗粒物质中清除。我们将制备新型的“强化”高温催化剂,其中催化位点可以通过孔网络进入,就像自然界一样,即,肺和肾生物乙醇不仅是一种很好的汽车燃料,也是一种很好的氢储存方法,并且可以转化为其他化学品,例如商品塑料,即聚乙烯。将给出生物乙醇作为中间体化学品的示范。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Thompson其他文献
Rigidity of operator systems: tight extensions and noncommutative measurable structures
算子系统的刚性:紧扩展和非交换可测结构
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Raphael Clouatre;Ian Thompson - 通讯作者:
Ian Thompson
Student teachers’ perceptions of the effects of poverty on learners’ educational attainment and well-being: perspectives from England and Scotland
实习教师对贫困对学习者教育程度和福祉影响的看法:来自英格兰和苏格兰的观点
- DOI:
10.1080/02607476.2016.1215542 - 发表时间:
2016 - 期刊:
- 影响因子:4
- 作者:
Sue Ellis;Ian Thompson;Jane McNicholl;J. Thomson - 通讯作者:
J. Thomson
The Mediation of Learning in the Zone of Proximal Development through a Co-Constructed Writing Activity.
通过共同构建的写作活动来调节最近发展区的学习。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ian Thompson - 通讯作者:
Ian Thompson
PD66-01 IMMEDIATE POST TURB INTRAVESICAL GEMCITABINE: A COST COMPARISON BASED ON SWOG S0337
- DOI:
10.1016/j.juro.2018.02.2997 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Jacob Gantz;Ekaterina Noyes;Catherine Tangen;Seth Lerner;Ian Thompson;Ralph Madeb;Edward Messing - 通讯作者:
Edward Messing
999 SELECTIVE DETECTION OF HISTOLOGICALLY AGGRESSIVE PROSTATE CANCER: VALIDATION BY PCPT COHORT DATA OF AN EDRN PREDICTIVE MODEL TO REDUCE UNNECESSARY PROSTATE BIOPSIES
- DOI:
10.1016/j.juro.2011.02.1032 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Stephen Williams;Simpa Salami;Meredith Regan;Donna Ankerst;John Wei;Mark Rubin;Ian Thompson;Martin Sanda - 通讯作者:
Martin Sanda
Ian Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Thompson', 18)}}的其他基金
A direct method for solving matrix Wiener-Hopf equations
求解矩阵维纳-霍普夫方程的直接方法
- 批准号:
EP/W000504/1 - 财政年份:2021
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Cultural artefacts and belonging: A comparative case study of displaced and refugee young people and families in Ukraine and Belarus.
文物和财产:乌克兰和白俄罗斯流离失所者和难民年轻人及家庭的比较案例研究。
- 批准号:
AH/V011324/1 - 财政年份:2021
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
The political economies of school exclusion and their consequences
学校排斥的政治经济学及其后果
- 批准号:
ES/S015744/1 - 财政年份:2019
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Development of a hybrid technology for treating recalcitrant water contaminants- assessing e-beam potential.
开发处理顽固水污染物的混合技术 - 评估电子束潜力。
- 批准号:
ST/K006568/1 - 财政年份:2013
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Doped Titania for Cancer Therapy
用于癌症治疗的掺杂二氧化钛
- 批准号:
EP/K502376/1 - 财政年份:2012
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Adaptive processing of natural feedstocks
天然原料的适应性加工
- 批准号:
EP/F016727/1 - 财政年份:2008
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Impact and recovery of groundwater microbial communities exposed to manufactured nanomaterials (MNM).
暴露于人造纳米材料(MNM)的地下水微生物群落的影响和恢复。
- 批准号:
NE/F011881/1 - 财政年份:2008
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Jacobi Transformations in Four-cluster Systems
四簇系统中的雅可比变换
- 批准号:
EP/E006485/1 - 财政年份:2006
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
Ages and Distances of Globular Clusters from Observations of Detached Eclipsing Binary Stars
根据分离食双星观测得出的球状星团的年龄和距离
- 批准号:
0507325 - 财政年份:2005
- 资助金额:
$ 12.27万 - 项目类别:
Standard Grant
Collaborative Research: Magellan II Echellette Spectrograph
合作研究:麦哲伦 II 小阶梯光栅光谱仪
- 批准号:
0215989 - 财政年份:2002
- 资助金额:
$ 12.27万 - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated)
行为和精细行为评价体系的构建
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
- 批准号:
10066963 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
EU-Funded
Bio-Electronic Integrated Devices for Healthcare Applications (BIOTRONICA)
用于医疗保健应用的生物电子集成设备(BIOTRONICA)
- 批准号:
EP/Y032535/1 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
Research Grant
UPSTREAM: Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
上游:结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
- 批准号:
10089056 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
EU-Funded
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
- 批准号:
10066959 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
EU-Funded
Circular and Bio-Based Solutions for the Ultimate Prevention of Plastics in Rivers Integrated with Elimination And Monitoring Technologies
结合消除和监测技术,最终预防河流中塑料的循环和生物基解决方案
- 批准号:
10082527 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
EU-Funded
FMSG: Bio: Integrated bioprocess and synthetic biology for future biomanufacturing of industrial products
FMSG:生物:用于未来工业产品生物制造的综合生物过程和合成生物学
- 批准号:
2328215 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
Standard Grant
BRC-BIO: Flexible traits and functional trade-offs: an integrated analysis of gastrointestinal plasticity in mammals
BRC-BIO:灵活的性状和功能权衡:哺乳动物胃肠道可塑性的综合分析
- 批准号:
2233467 - 财政年份:2023
- 资助金额:
$ 12.27万 - 项目类别:
Standard Grant
Integrated Biorefinery for Conversion of Crop Residues into Bio-based Polymers
将作物残渣转化为生物基聚合物的综合生物精炼厂
- 批准号:
RGPIN-2019-05159 - 财政年份:2022
- 资助金额:
$ 12.27万 - 项目类别:
Discovery Grants Program - Individual
Developing an integrated analytical platform for evaluating the role of forest biorefineries in achieving a sustainable circular bio-based economy
开发综合分析平台,用于评估森林生物精炼厂在实现可持续循环生物经济中的作用
- 批准号:
576235-2022 - 财政年份:2022
- 资助金额:
$ 12.27万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Bio-Inspired Integrated Vision System Based on the Continuous Valued Number System
基于连续值数系统的仿生集成视觉系统
- 批准号:
RGPIN-2019-06890 - 财政年份:2022
- 资助金额:
$ 12.27万 - 项目类别:
Discovery Grants Program - Individual