Computer Simulation Theory of Globular Protein Dynamics

球状蛋白质动力学的计算机模拟理论

基本信息

  • 批准号:
    7482451
  • 负责人:
  • 金额:
    $ 27.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1986
  • 资助国家:
    美国
  • 起止时间:
    1986-12-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Our long-term objectives are to develop robust algorithms that can predict protein tertiary structure and the quaternary structure of DNA-protein complexes and to apply the methodology to important proteomes. Protein structures are important because they can assist in the elucidation of protein function. This is essential as the functions of roughly half the proteins in a given proteome are unknown. The proposed research builds on the recently developed and promising TASSER structure prediction algorithm that employs threading identified templates to provide continuous structural fragments and predicted tertiary contacts followed by fold assembly/refinement protocols. TASSER provides reasonable models for -70% of the single domain proteins that are weakly homologous to proteins with solved structures and often provides a significant improvement over the input threading alignment. To extend this approach and to address identified weaknesses, the following Specific Aims are proposed: (1) For single domain proteins, the performance of TASSER in the template free limit will be improved. At present, this is the major weakness of TASSER. (2) TASSER will be extended to better predict the tertiary structure of membrane proteins. (3)TASSER will be extended to explicitly include prosthetic groups, metal ions and small ligands in the protein modeling procedure, with the goal of producing more accurate structural predictions. (4) TASSER will be extended to better treat multidomain proteins. Currently, prediction success depends on whether the domain orientations in the target and template structures are similar. (5) TASSER will be extended to predict the structure of proteins bound to DNA. Then, we shall apply a recently developed algorithm that predicts whether a protein will bind DNA, and if so, model the structure of the DNA-protein complex, ultimately on a proteomic scale. (6) The effect of alternative splicing on the structure of single domain proteins will be explored. (7) Tertiary structure prediction of proteins less than 300 residues in length in a large number of proteomes will be done. Specific Aims 1-5represent methodological advances, whereas Specific Aims 6 & 1 are designed to apply the improved TASSER algorithm to biologically important problems. For all Specific Aims, comprehensive benchmarking that includes participation in future CASPs will be done. All developed algorithms, tools, and results will be made available on our website, http://cssb.biology.gatech.edu/skolnick/.
我们的长期目标是开发强大的算法,可以预测蛋白质的三级结构, 四级结构的DNA-蛋白质复合物,并应用于重要的蛋白质组的方法。 蛋白质结构是重要的,因为它们可以帮助阐明蛋白质的功能。这是必不可少 因为在给定的蛋白质组中大约一半的蛋白质的功能是未知的。拟议的研究建立 最近开发的和有前途的TASSER结构预测算法,采用线程 确定模板以提供连续的结构片段和预测的三级接触, 折叠组装/细化方案。TASSER为约70%的单域提供了合理的模型 与具有解析结构的蛋白质弱同源的蛋白质,并且通常提供显著的 对输入螺纹对齐的改进。为了推广这一做法, 针对单结构域蛋白质,本文提出了以下具体目标:(1)对单结构域蛋白质, TASSER中的模板自由限制将得到改善。目前,这是TASSER的主要弱点。(二) TASSER将被扩展以更好地预测膜蛋白的三级结构。(3)TASSER将是 扩展到明确包括辅基,金属离子和蛋白质建模中的小配体 程序,目的是产生更准确的结构预测。(4)TASSER将扩展到 更好地治疗多结构域蛋白质。目前,预测的成功取决于是否域方向 在目标和模板结构是相似的。(5)TASSER将被扩展到预测的结构 与DNA结合的蛋白质然后,我们将应用最近开发的算法,预测蛋白质是否 将结合DNA,如果是这样,最终在蛋白质组学规模上模拟DNA-蛋白质复合物的结构。 (6)选择性剪接对单结构域蛋白质结构的影响将被探讨。(7)叔 将对大量蛋白质组中长度小于300个残基的蛋白质进行结构预测。 具体目标1- 5代表了方法上的进步,而具体目标6和1旨在应用 改进的TASSER算法用于解决生物学中的重要问题。针对所有具体目标,全面 将制定基准,包括参与未来的CASP。所有开发的算法,工具, 结果将在我们的网站http://cssb.biology.gatech.edu/skolnick/上公布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY SKOLNICK其他文献

JEFFREY SKOLNICK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金

Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
  • 批准号:
    10797550
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    10399478
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    9926899
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    9270553
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    10613959
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
  • 批准号:
    8474727
  • 财政年份:
    2012
  • 资助金额:
    $ 27.05万
  • 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
  • 批准号:
    8285272
  • 财政年份:
    2012
  • 资助金额:
    $ 27.05万
  • 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
  • 批准号:
    7957342
  • 财政年份:
    2009
  • 资助金额:
    $ 27.05万
  • 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
  • 批准号:
    7723173
  • 财政年份:
    2008
  • 资助金额:
    $ 27.05万
  • 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
  • 批准号:
    7601397
  • 财政年份:
    2007
  • 资助金额:
    $ 27.05万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了