Geometry and Topology in Complex Quantum Systems

复杂量子系统中的几何和拓扑

基本信息

  • 批准号:
    EP/E019692/1
  • 负责人:
  • 金额:
    $ 25.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Within the last decade, quantum information has progressed from being a completely novel topic to one of the most active and fruitful areas within physics. This amazing transition is not only due to the wealth of innovative science that is being continuously discovered, but also to its applications as a radical new theory for information processing. Entanglement, a phenomenon that portrays non-local correlations, is one of the main resources for quantum information technology. Its fragile nature requires the introduction of new and appropriate technologies for its generation, preservation and manipulation. From the theoretical front many complex models have been considered and a variety of intriguing properties have been discovered that have potential applications to quantum information processing. Indeed, in the last few years quantum information has made a significant contribution to the understanding of many particle effects by introducing a variety of entanglement measures, sophisticated numerical techniques and novel analytical methods. Of particular interest are models that can actually be realized in the laboratory for example by optical lattices, ion traps, or Josephson Junctions. Apart from the direct interest in these systems aiming at the understanding of critical phenomena, topological effects and high-Tc superconductivity they offer the exciting possibility of implementing error-free quantum computation. There are three distinct aims of this proposal. Firstly, to employ Berry phases, i.e. geometrical evolutions first introduced by Michael Berry, to the study of critical phenomena and their entanglement properties. Critical phenomena are concerned with the abrupt changes in the behavior of interacting many-particle systems and are of central interest in the fields of condensed matter and theoretical physics. Apart from being intellectually interesting, geometrical phases can also be used for the understanding of complex systems. An example is in chemistry where Berry phases are widely used to probe the structure of the potential surfaces (total energy) of complex molecules and to detect their conical intersections. An equivalent study can be performed when geometrical phases are used to probe critical phenomena, e.g. of interacting spin chains. This is a newly established field with the exciting possibility of providing valuable insights in the area of critical phenomena. Secondly, to develop models that can support topological quantum information processing while at the same time being realizable with present or near future technology. The significant speedup of quantum computers with respect to their classical counterparts is hindered by the introduction of errors due to imperfect control procedures or undesired interactions with the environment. The most straightforward error-free processing of quantum information is achieved by employing particular exotic particles named anyons by Frank Wilczek. With these anyonic systems information is encoded in global topological properties of many particle quantum systems and thus it is protected from any type of errors that can occur locally. There are two main physical systems that can in principle realize these properties, two-dimensional electron gases in the fractional quantum Hall state or specific spin lattice systems that exhibit topological phases. Most of the proposed systems are either difficult to manipulate or require interactions that are prohibitively demanding. Identification of alternative setups that can support topological phases is of vital importance and is the central theme of this part of the proposal. The final aim is to generalize the geometrical evolutions that are performed around critical points to the case of degenerate ground states, the latter being the main characteristic of topological models. This exciting application of the first part of the proposal will enable the unambiguous detection of topological systems.
在过去的十年中,量子信息已经从一个全新的话题发展成为物理学中最活跃和最富有成果的领域之一。这一惊人的转变不仅是由于不断发现的创新科学的财富,而且还由于其作为信息处理的激进新理论的应用。纠缠是描述非定域关联的一种现象,是量子信息技术的主要资源之一。由于其脆弱性,需要采用新的适当技术来生产、保存和操作。从理论上讲,许多复杂的模型已经被考虑,并且已经发现了各种有趣的性质,这些性质在量子信息处理中具有潜在的应用。事实上,在过去的几年里,量子信息通过引入各种纠缠度量、复杂的数值技术和新颖的分析方法,对许多粒子效应的理解做出了重大贡献。特别令人感兴趣的是可以在实验室中实际实现的模型,例如光学晶格,离子阱或约瑟夫森结。除了对这些系统的直接兴趣,旨在理解临界现象,拓扑效应和高Tc超导性,它们提供了实现无误差量子计算的令人兴奋的可能性。这项建议有三个不同的目的。首先,利用Berry相,即由Michael Berry首先提出的几何演化,研究临界现象及其纠缠特性。临界现象与相互作用的多粒子系统行为的突变有关,是凝聚态和理论物理领域的核心兴趣。除了在智力上有趣之外,几何相位还可以用于理解复杂系统。一个例子是在化学中,贝里相位被广泛用于探测复杂分子的势能面(总能量)的结构,并检测它们的圆锥相交。当几何相位用于探测临界现象时,例如相互作用的自旋链,可以进行等效的研究。这是一个新建立的领域,具有在临界现象领域提供有价值见解的令人兴奋的可能性。第二,开发能够支持拓扑量子信息处理的模型,同时可以用现在或不久的将来的技术实现。量子计算机相对于经典计算机的显着加速受到由于不完善的控制程序或与环境的不期望的相互作用而引入的错误的阻碍。最直接无误的量子信息处理是通过使用特殊的奇异粒子来实现的,这些粒子被弗兰克·威尔切克命名为任意子。在这些任意子系统中,信息被编码在许多粒子量子系统的全局拓扑性质中,因此它被保护不受任何类型的局部错误的影响。有两个主要的物理系统可以在原则上实现这些属性,在分数量子霍尔态的二维电子气或特定的自旋晶格系统,表现出拓扑相。大多数提出的系统要么难以操作,要么需要的交互要求非常高。识别可支持拓扑阶段的替代设置至关重要,也是本部分提案的中心主题。最后的目的是推广的几何演化,在临界点附近进行的情况下,退化的基态,后者是拓扑模型的主要特点。该提案的第一部分的这一令人兴奋的应用将使拓扑系统的明确检测成为可能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal states of anyonic systems
  • DOI:
    10.1016/j.nuclphysb.2009.11.009
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sofyan Iblisdir;David Pérez-García;Miguel Aguado;J. Pachos
  • 通讯作者:
    Sofyan Iblisdir;David Pérez-García;Miguel Aguado;J. Pachos
The wavefunction of an anyon
  • DOI:
    10.1016/j.aop.2006.05.007
  • 发表时间:
    2006-05
  • 期刊:
  • 影响因子:
    3
  • 作者:
    J. Pachos
  • 通讯作者:
    J. Pachos
Conformally flat Kaluza-Klein spaces, pseudo-/para-complex space forms and generalized gravitational kinks
共形平坦的卡鲁扎-克莱因空间、伪/准复形空间形式和广义引力扭结
  • DOI:
    10.1016/j.geomphys.2009.06.013
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Maraner P
  • 通讯作者:
    Maraner P
Universal Features of Dimensional Reduction Schemes from General Covariance Breaking
  • DOI:
    10.1016/j.aop.2007.11.004
  • 发表时间:
    2007-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Maraner;J. Pachos
  • 通讯作者:
    P. Maraner;J. Pachos
Yang-Mills gauge theories from simple fermionic lattice models
来自简单费米子晶格模型的杨-米尔斯规范理论
  • DOI:
    10.1016/j.physleta.2009.05.029
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Maraner P
  • 通讯作者:
    Maraner P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiannis Pachos其他文献

Jiannis Pachos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiannis Pachos', 18)}}的其他基金

Free-particle descriptions of topological quantum matter and many-body localisation
拓扑量子物质和多体局域化的自由粒子描述
  • 批准号:
    EP/R020612/1
  • 财政年份:
    2018
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
  • 批准号:
    2053284
  • 财政年份:
    2021
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
  • 批准号:
    2052983
  • 财政年份:
    2021
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Continuing Grant
Dynamics and Resilience of Complex Network Systems with Switching Topology
具有交换拓扑的复杂网络系统的动力学和弹性
  • 批准号:
    DP200101199
  • 财政年份:
    2020
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Discovery Projects
DFG-RSF: Complex dynamical networks: effects of heterogeneity, adaptivity, and topology
DFG-RSF:复杂动态网络:异质性、适应性和拓扑的影响
  • 批准号:
    440145547
  • 财政年份:
    2020
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Research Grants
Collaborative Research: Inferring Dynamic Topology to Decode and Control Spatiotemporal Structures in Complex Networks
合作研究:推断动态拓扑以解码和控制复杂网络中的时空结构
  • 批准号:
    9974539
  • 财政年份:
    2018
  • 资助金额:
    $ 25.14万
  • 项目类别:
Collaborative Research: Inferring Dynamic Topology to Decode and Control Spatiotemporal Structures in Complex Networks
合作研究:推断动态拓扑以解码和控制复杂网络中的时空结构
  • 批准号:
    10059771
  • 财政年份:
    2018
  • 资助金额:
    $ 25.14万
  • 项目类别:
Collaborative Research: Inferring Dynamic Topology to Decode and Control Spatiotemporal Structures in Complex Networks
合作研究:推断动态拓扑以解码和控制复杂网络中的时空结构
  • 批准号:
    10205101
  • 财政年份:
    2018
  • 资助金额:
    $ 25.14万
  • 项目类别:
Geometry of non-Kaehler open complex manifolds and 4-dimensional topology
非凯勒开复流形的几何和 4 维拓扑
  • 批准号:
    17K14193
  • 财政年份:
    2017
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Synthesis and Self-Assembly Characteristics of Brush Block Copolymers in Complex Nonlinear Topology
复杂非线性拓扑刷嵌段共聚物的合成及自组装特性
  • 批准号:
    17J01195
  • 财政年份:
    2017
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
  • 批准号:
    16K13755
  • 财政年份:
    2016
  • 资助金额:
    $ 25.14万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了