Graph expansion and applications
图扩展及应用
基本信息
- 批准号:EP/E02162X/1
- 负责人:
- 金额:$ 22.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research falls into the area of Graph theory. Graphs consist of a set of vertices which are connected by edges and can be used to model many kinds of problems. The project will focus on the class of expanding graphs. These arise in several areas of both Pure Mathematics and Theoretical Computer Science. A graph is called expanding if for every set of its vertices, the set of its neighbours of is comparatively large. Intuitively, this means that such a graph contains no `bottlenecks': it is not possible to cut the graph into several large pieces by removing only a few vertices. Expansion can be characterized in many different ways. For example, one way of thinking about expansion is in terms of random graphs: random graphs enjoy very strong expansion properties (with high probability). Conversely, if a graph is expanding, this usually makes it behave like a random graph (in a well-defined sense). A simple example of this is that the average distance between pairs of vertices is comparatively small.Expansion is a property that links many different areas together. The area where expanding graphs first explicitly arose was complexity theory (where for example they were used as building blocks to `amplify' the properties of some given construction and were used in the construction of efficient sorting networks). Another example is that random walks on expanding graphs yield rapidly mixing Markov chains (i.e. they quickly `forget' where they started from). This has important applications in Combinatorial Optimization and Statistical Physics. For instance it allows one to sample certain configurations efficiently and almost uniformly at random.However, we are still a long way from a satisfactory understanding of the way expansion forces useful combinatorial properties and, conversely, how one can prove that some graph is expanding. Motivated by this, the first aim of this project is to investigate the influence of expansion on Hamilton cycles in graphs. A Hamilton cycle is a cycle containing all the vertices of the graph. The question of which graphs contain a Hamilton cycle is a fundamental problem in Combinatorial Optimization and Theoretical Computer Science. There are several open questions in the area which I believe can be approached in a unified way (using techniques based on expansion of the underlying graph).The second aim is to investigate expansion of graphs of 0/1 polytopes. This is an important class of graphs arising in Combinatorial Optimization whose structural properties are not well understood.The third aim is to investigate properties of scale-free random graphs, in particular those related to their expansion. These graphs are used for example as models for the structure of the internet.
拟议的研究属于图论领域。图由一组通过边连接的顶点组成,可用于对多种问题进行建模。该项目将重点关注扩展图类。这些出现在纯数学和理论计算机科学的多个领域。如果对于图的每组顶点,其邻居的集合都相对较大,则该图被称为扩展图。直观上,这意味着这样的图不包含“瓶颈”:不可能通过仅删除几个顶点来将图切割成几个大块。扩张可以用许多不同的方式来表征。例如,考虑扩展的一种方式是使用随机图:随机图具有非常强的扩展特性(概率很高)。相反,如果图正在扩展,这通常会使其表现得像随机图(在明确定义的意义上)。一个简单的例子是顶点对之间的平均距离相对较小。扩展是将许多不同区域连接在一起的属性。扩展图首先明确出现的领域是复杂性理论(例如,它们被用作构建块来“放大”某些给定结构的属性,并用于构建高效的排序网络)。另一个例子是,扩展图上的随机游走会产生快速混合的马尔可夫链(即它们很快“忘记”它们从哪里开始)。这在组合优化和统计物理中具有重要的应用。例如,它允许人们有效地、几乎均匀地随机地对某些配置进行采样。然而,我们距离令人满意地理解扩展如何强制有用的组合属性以及相反地如何证明某个图正在扩展还有很长的路要走。受此启发,该项目的首要目标是研究展开对图中汉密尔顿循环的影响。汉密尔顿循环是包含图的所有顶点的循环。哪些图包含哈密尔顿循环的问题是组合优化和理论计算机科学中的一个基本问题。我相信该领域有几个悬而未决的问题,可以通过统一的方式来解决(使用基于底层图扩展的技术)。第二个目标是研究 0/1 多胞体图的扩展。这是组合优化中出现的一类重要的图,其结构特性尚未得到很好的理解。第三个目标是研究无标度随机图的特性,特别是与其扩展相关的特性。例如,这些图被用作互联网结构的模型。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A semi-exact degree condition for Hamilton cycles in digraphs
有向图中汉密尔顿循环的半精确度条件
- DOI:10.48550/arxiv.1002.3910
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Christofides D
- 通讯作者:Christofides D
Edge-disjoint Hamilton cycles in graphs
- DOI:10.1016/j.jctb.2011.10.005
- 发表时间:2009-08
- 期刊:
- 影响因子:0
- 作者:Demetres Christofides;D. Kühn;Deryk Osthus
- 通讯作者:Demetres Christofides;D. Kühn;Deryk Osthus
A Dirac type result on Hamilton cycles in oriented graphs
有向图中汉密尔顿循环的狄拉克型结果
- DOI:10.48550/arxiv.0709.1047
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kelly L
- 通讯作者:Kelly L
A Semiexact Degree Condition for Hamilton Cycles in Digraphs
- DOI:10.1137/090761756
- 发表时间:2010-02
- 期刊:
- 影响因子:0
- 作者:Demetres Christofides;Peter Keevash;D. Kühn;Deryk Osthus
- 通讯作者:Demetres Christofides;Peter Keevash;D. Kühn;Deryk Osthus
Finding Hamilton cycles in robustly expanding digraphs
在稳健扩张的有向图中寻找汉密尔顿循环
- DOI:10.7155/jgaa.00261
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Christofides D
- 通讯作者:Christofides D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deryk Osthus其他文献
Forcing unbalanced complete bipartite minors
强迫不平衡的完整二分未成年人
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
D. Kühn;Deryk Osthus - 通讯作者:
Deryk Osthus
Large planar subgraphs in dense graphs
密集图中的大平面子图
- DOI:
10.1016/j.jctb.2005.04.004 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
D. Kühn;Deryk Osthus;A. Taraz - 通讯作者:
A. Taraz
A minimum degree condition forcing a digraph to be k-linked
强制有向图成为 k 连通的最小度条件
- DOI:
10.1016/j.endm.2007.07.007 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Deryk Osthus;D. Kühn - 通讯作者:
D. Kühn
Packings in Dense Regular Graphs
密集正则图中的堆积
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
D. Kühn;Deryk Osthus - 通讯作者:
Deryk Osthus
Minors in graphs of large girth
大周长图中的未成年人
- DOI:
10.1002/rsa.10076 - 发表时间:
2003 - 期刊:
- 影响因子:1
- 作者:
D. Kühn;Deryk Osthus - 通讯作者:
Deryk Osthus
Deryk Osthus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deryk Osthus', 18)}}的其他基金
Approximate structure in large graphs and hypergraphs
大图和超图的近似结构
- 批准号:
EP/S00100X/1 - 财政年份:2019
- 资助金额:
$ 22.66万 - 项目类别:
Research Grant
Edge-colourings and Hamilton decompositions of graphs
图的边着色和汉密尔顿分解
- 批准号:
EP/J008087/1 - 财政年份:2012
- 资助金额:
$ 22.66万 - 项目类别:
Research Grant
相似国自然基金
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Molecular Basis for Myelodysplasia Induced by U2AF1 Mutations
U2AF1 突变诱导的骨髓增生异常的分子基础
- 批准号:
10649974 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Personalized vaccine immunotherapy in combination with anti-PD 1 antibody for recurrent or metastatic squamous cell carcinoma of the head and neck
个体化疫苗免疫疗法联合抗 PD 1 抗体治疗复发性或转移性头颈部鳞状细胞癌
- 批准号:
10658577 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Targeting of IL-1 Signaling in Myelofibrosis
骨髓纤维化中 IL-1 信号传导的靶向
- 批准号:
10657996 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
A chemical genetics approach for studies of HIV-1 latency
研究 HIV-1 潜伏期的化学遗传学方法
- 批准号:
10711683 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Engineering T Cell Adoptive Therapy for Glioblastoma
胶质母细胞瘤的工程 T 细胞过继疗法
- 批准号:
10752995 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Ex vivo expansion of skeletal muscle satellite cells
骨骼肌卫星细胞的离体扩增
- 批准号:
10570269 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:
Multiplexed nanoparticle delivery to increase CRISPR/Cas gene editing for enhanced cancer therapy
多重纳米颗粒递送可增强 CRISPR/Cas 基因编辑,从而增强癌症治疗
- 批准号:
10419618 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:
Ex vivo expansion of skeletal muscle satellite cells
骨骼肌卫星细胞的离体扩增
- 批准号:
10390539 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:














{{item.name}}会员




