New approaches to central problems in euclidean harmonic analysis and geometric combinatorics

解决欧几里得调和分析和几何组合学中心问题的新方法

基本信息

  • 批准号:
    EP/E022340/1
  • 负责人:
  • 金额:
    $ 26.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

At the heart of the proposed research is an important unsolved mathematical problem known as the Kakeya conjecture. This conjecture, which originated in the 1920's, has attracted great interest from mathematicians over the last 30 years, due to the emergence of unexpected and fundamental connections with different branches of mathematics and mathematical physics. The various forms of the conjecture concern the extent to which families of line segments (of unit length, and pointing in different directions in three dimensional space) may be rearranged so that collectively they occupy a very small amount of space. In this rearrangement process it is important that the line segments involved are not rotated in any way. Perhaps rather counter-intuitively, it was shown by Besicovitch that, no matter which family one starts off with, an arrangement can always be found for which the total space occupied by the line segments has zero volume. A popular form of the Kakeya conjecture states that although such arrangements can be small in terms of their volume, they must however be as large as possible in terms of their so-called fractal dimension .Very recently a new approach to problems of this type has been devised, leading to the near resolution of certain (so-called multilinear ) analogues of the Kakeya conjecture. This approach is based on the discovery that certain quantities (related to the fractal dimension) increase as the line segments in any given family simultaneously slide to the origin . The purpose of the proposed research is to develop this monotonicity-based approach and investigate the extent to which it may be used to establish the original classical Kakeya conjecture, and its modern variants. Furthermore, similar monotonicity-based approaches to a variety of central unsolved problems in pure mathematics and mathematical physics are proposed.
这项拟议研究的核心是一个重要的尚未解决的数学问题,即Kakeya猜想。这个猜想起源于20世纪20年代的S,在过去的30年里引起了数学家们的极大兴趣,因为数学和数学物理的不同分支之间出现了意想不到的基本联系。各种形式的猜想涉及(单位长度的,在三维空间中指向不同方向的)线段族可以被重新排列的程度,以使它们共同占据非常少量的空间。在此重新排列过程中,重要的是所涉及的线段不以任何方式旋转。也许与直觉相反的是,Besicovitch表明,无论从哪个家族开始,总能找到一种线段占用的总空间体积为零的排列。Kakeya猜想的一种流行形式指出,虽然这种排列的体积可以很小,但它们必须在所谓的分维方面尽可能大。最近,人们设计了一种解决这类问题的新方法,导致了Kakeya猜想的某些(所谓的多线性)类似物的近似解析。这种方法是基于这样一种发现,即当任何给定族中的线段同时滑到原点时,某些量(与分维相关)增加。这项研究的目的是发展这种基于单调性的方法,并调查它在多大程度上可以用来建立原始的经典Kakeya猜想及其现代变体。此外,对于纯数学和数学物理中的各种中心未解决问题,也提出了类似的基于单调性的方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the dimension of divergence sets of dispersive equations
  • DOI:
    10.1007/s00208-010-0529-z
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    J. Barceló;Jonathan Bennett;A. Carbery;K. Rogers
  • 通讯作者:
    J. Barceló;Jonathan Bennett;A. Carbery;K. Rogers
Heat-flow monotonicity related to some inequalities in euclidean analysis
与欧几里德分析中的一些不等式相关的热流单调性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett Jonathan
  • 通讯作者:
    Bennett Jonathan
Weighted norm inequalities for oscillatory integrals with finite type phases on the line
线上具有有限类型相位的振荡积分的加权范数不等式
  • DOI:
    10.48550/arxiv.1110.6031
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett J
  • 通讯作者:
    Bennett J
Heat-flow monotonicity related to the Hausdorff--Young inequality
与豪斯多夫-杨氏不等式相关的热流单调性
  • DOI:
    10.48550/arxiv.0806.4329
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett J
  • 通讯作者:
    Bennett J
Heat-flow monotonicity related to the Hausdorff-Young inequality
与 Hausdorff-Young 不等式相关的热流单调性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Bennett其他文献

PATHWISE UNIQUENESS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY CAUCHY PROCESSES WITH DRIFT
带漂移柯西过程驱动的随机微分方程的路径唯一性
  • DOI:
    10.18910/83206
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Jonathan Bennett;Neal Bez;Stefan Buschenhenke;Michael Cowling;Taryn Flock;Tsukada Hiroshi
  • 通讯作者:
    Tsukada Hiroshi
A sharp k-plane Strichartz inequality for the Schrodinger equation
薛定谔方程的尖锐 k 平面 Strichartz 不等式
CMR 3-83 - Functional Capacity Impairment in Symptomatic Severe Aortic Stenosis: inline Quantitative Stress Myocardial Perfusion Imaging Predicts Six Minute Walk Test
CMR 3-83 - 症状性严重主动脉瓣狭窄患者的功能容量受损:在线定量负荷心肌灌注成像预测 6 分钟步行试验
  • DOI:
    10.1016/j.jocmr.2024.100187
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Jonathan Bennett;George Thornton;Nikoo Aziminia;Christian Nitsche;Francisco Gama;William Procter;Tiago Fernandes;Jeanelle Generoso;Maria Sapienza;Rachael Harrison;Iain Pierce;Charlotte H. Manisty;Alun Hughes;Rhodri Davies;James Moon;Peter Kellman;Thomas Treibel
  • 通讯作者:
    Thomas Treibel
Journey from aortic regurgitation to stenosis – left ventricular structural and perfusion changes seen in patient-prosthesis mismatch
从主动脉瓣反流到狭窄的旅程——在患者-假体不匹配中看到的左心室结构和灌注变化
  • DOI:
    10.1016/j.jocmr.2024.101742
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Abhishek Shetye;Thomas Treibel;George Thornton;Nikoo Aziminia;Jonathan Bennett;Iain Pierce;Peter Kellman;James Moon
  • 通讯作者:
    James Moon
Safety of ward-based, non-physician-led, cardiac monitor implantation
基于病房的、非医师主导的心脏监护仪植入的安全性
  • DOI:
    10.1016/j.hrthm.2024.07.003
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    William T.C. Procter;Jonathan Bennett;James Elliott;Rok Mravljak;George D. Thornton;Nikoo Aziminia;Francisco Gama;Christian Nitsche;Zoe Carter;Jincymol Binoy;Christopher Monkhouse;Mark Earley;Ross J. Hunter;Thomas A. Treibel
  • 通讯作者:
    Thomas A. Treibel

Jonathan Bennett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Bennett', 18)}}的其他基金

Tomographic Fourier Analysis
断层傅里叶分析
  • 批准号:
    EP/W032880/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Research Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

New approaches to combat CNS inflammation in Veterans: Targeting a metabolic enzyme in demyelinating disease
对抗退伍军人中枢神经系统炎症的新方法:针对脱髓鞘疾病中的代谢酶
  • 批准号:
    10427137
  • 财政年份:
    2019
  • 资助金额:
    $ 26.62万
  • 项目类别:
New approaches to combat CNS inflammation in Veterans: Targeting a metabolic enzyme in demyelinating disease
对抗退伍军人中枢神经系统炎症的新方法:针对脱髓鞘疾病中的代谢酶
  • 批准号:
    9565043
  • 财政年份:
    2019
  • 资助金额:
    $ 26.62万
  • 项目类别:
New approaches to combat CNS inflammation in Veterans: Targeting a metabolic enzyme in demyelinating disease
对抗退伍军人中枢神经系统炎症的新方法:针对脱髓鞘疾病中的代谢酶
  • 批准号:
    10084232
  • 财政年份:
    2019
  • 资助金额:
    $ 26.62万
  • 项目类别:
Collaborative Research: P2C2--Cave Climate Histories of East/Central Asia: Deeper in Time, Wider Geographically, New Analytical Approaches, and New Tests of Climate Interpretations
合作研究:P2C2--东亚/中亚洞穴气候历史:更深入的时间、更广泛的地理、新的分析方法和气候解释的新测试
  • 批准号:
    1702407
  • 财政年份:
    2017
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Cave Climate Histories of East/Central Asia: Deeper in Time, Wider Geographically, New Analytical Approaches, and New Tests of Climate Interpretations
合作研究:P2C2--东亚/中亚洞穴气候历史:更深入的时间、更广泛的地理、新的分析方法和气候解释的新测试
  • 批准号:
    1702816
  • 财政年份:
    2017
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
New Approaches for Empowering Studies of Asthma in Populations of African Descent
非洲人后裔哮喘研究的新方法
  • 批准号:
    10094067
  • 财政年份:
    2011
  • 资助金额:
    $ 26.62万
  • 项目类别:
New Approaches for Empowering Studies of Asthma in Populations of African Descent
非洲人后裔哮喘研究的新方法
  • 批准号:
    10326791
  • 财政年份:
    2011
  • 资助金额:
    $ 26.62万
  • 项目类别:
US-Gabon Workshop 2011: Evolution and conservation of Central African biological diversity: new approaches and avenues for international collaboration
2011 年美国-加蓬研讨会:中部非洲生物多样性的演变和保护:国际合作的新方法和途径
  • 批准号:
    0968587
  • 财政年份:
    2010
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
NEW APPROACHES TO BRAIN TUMOR THERAPY-(NABTT)
脑肿瘤治疗新方法 - (NABTT)
  • 批准号:
    7162521
  • 财政年份:
    2004
  • 资助金额:
    $ 26.62万
  • 项目类别:
NEW APPROACHES TO BRAIN TUMOR THERAPY-(NABTT)
脑肿瘤治疗新方法 - (NABTT)
  • 批准号:
    6895463
  • 财政年份:
    2004
  • 资助金额:
    $ 26.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了