New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
基本信息
- 批准号:7504345
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyBinomial DistributionCharacteristicsChestClassificationComputer AssistedComputer softwareDataData AnalysesData SetDatabasesDecision MakingDetectionDevelopmentDiagnosticEyeFailureImageLearningLesionLocationLung noduleMalignant NeoplasmsMammographyMeasuresMedical ImagingMethodsModelingNoiseNumbersOther FindingPerceptionPerformancePoisson DistributionPositioning AttributeProbabilityPublic HealthRateReceiver Operating CharacteristicsReportingSignal TransductionSiteStatistically SignificantTestingTimeTrainingValidationbasegazeimprovedindexingnovel strategiesradiologistresponsesample fixationstudy characteristicssuccesstool
项目摘要
DESCRIPTION (provided by applicant): Eye-tracking methods are fundamental for the study of medical image perception and central to discoveries about why radiologist interpretative failures occur. However, analysis of eye-tracking data has been rather primitive and ignores potentially valuable information. We propose a new approach to the analysis of eye-tracking data based on a recently developed model for the analysis of receiver operating characteristic (ROC) data, free-response operating characteristic (FROC) mark-rating data, and location- specific ROC (LROC) data. Based on Chakraborty's model, we propose a method that integrates the analysis of true and false positive characterizations of eye position data and uses the degree of suspicion of radiologist indicated suspicious regions. The inclusion of the FROC performance data is expected to yield better understanding of image perception than is possible via eye-tracking alone. The integrated analysis is enabled by two recent developments: the Chakraborty search model and a method for estimating its parameters. The parameters of the model correspond to physical quantities that are measured in eye-tracking studies. The project consists of quantifying these correspondences, providing a demonstration of integrated analysis, and showing its advantages over eye-tracking alone. Eye-tracking and FROC studies have so far proceeded along independent tracks, one to understand image perception and the other to measure performance. This project shows how a combined approach can yield a more powerful tool for analyzing eye-tracking data and understanding image perception. With better understanding of image perception based on improved analysis, we will be better able to improve diagnostic performance. Applications of this method include radiologist training and improved CAD algorithms. The rich dataset of simultaneously acquired FROC and eye-position data, and analysis software will be made freely available at the close of our project. PUBLIC HEALTH RELEVANCE Eye-tracking apparatus measures where radiologists look. This information is fundamental to understand medical image perception and central to learning why radiologist interpretative failures occur. However, analysis of such data has been primitive and ignores valuable information. We propose a new approach to the analysis of eye-tracking data. With better understanding of image perception we will be better able to improve radiologist performance and reduce interpretive errors.
描述(由申请人提供):眼动跟踪方法是医学图像感知研究的基础,也是发现放射科医生解释失败原因的关键。然而,对眼动追踪数据的分析相当原始,忽略了潜在的有价值的信息。我们提出了一种新的方法来分析眼动跟踪数据的基础上,最近开发的模型,用于分析的受试者工作特性(ROC)数据,自由反应工作特性(FROC)标记评级数据,和位置特定的ROC(LROC)数据。基于Chakraborty的模型,我们提出了一种方法,该方法集成了对眼睛位置数据的真阳性和假阳性特征的分析,并使用放射科医生指示的可疑区域的怀疑程度。包括FROC性能数据预计将产生更好的理解图像感知比可能通过眼睛跟踪单独。综合分析是由两个最近的事态发展:Chakraborty搜索模型和估计其参数的方法。模型的参数对应于在眼动跟踪研究中测量的物理量。该项目包括量化这些对应关系,提供综合分析的演示,并显示其优于单独的眼动跟踪。眼动追踪和FROC研究到目前为止都是沿着沿着独立的轨道进行的,一个是理解图像感知,另一个是测量表现。该项目展示了一种组合方法如何产生一种更强大的工具,用于分析眼动跟踪数据和理解图像感知。通过基于改进的分析更好地理解图像感知,我们将能够更好地提高诊断性能。该方法的应用包括放射科医师培训和改进的CAD算法。同时获得的FROC和眼位数据的丰富数据集以及分析软件将在我们的项目结束时免费提供。眼动追踪仪测量放射科医生的视线范围。这些信息是理解医学图像感知的基础,也是了解放射科医生解释失败原因的核心。然而,对这些数据的分析是原始的,忽略了有价值的信息。我们提出了一种新的方法来分析眼动跟踪数据。随着对图像感知的更好理解,我们将能够更好地提高放射科医生的表现并减少解释错误。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEV P CHAKRABORTY其他文献
DEV P CHAKRABORTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEV P CHAKRABORTY', 18)}}的其他基金
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
8054220 - 财政年份:2008
- 资助金额:
$ 37.99万 - 项目类别:
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
7799280 - 财政年份:2008
- 资助金额:
$ 37.99万 - 项目类别:
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
7636755 - 财政年份:2008
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
6956859 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7103678 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7780213 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
8212119 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
8426180 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7234339 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7425830 - 财政年份:2005
- 资助金额:
$ 37.99万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant