Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
基本信息
- 批准号:8212119
- 负责人:
- 金额:$ 40.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAwardBiopsyBreastChestClinicalClinical DataClinical TrialsComplexComputer softwareDataData AnalysesData CorrelationsData SetDetectionDiagnosticDigital MammographyEarly DiagnosisEarly treatmentEquipmentFundingGoalsGoldHealthcareHumanImageInternationalJournalsLeftLesionLocationMalignant NeoplasmsMammographyMeasurementMeasuresMethodologyMethodsModalityModelingOutcomePaperPatientsPeer ReviewPerformancePlanning TechniquesProspective StudiesPublishingReceiver Operating CharacteristicsReportingResearchResearch PersonnelRewardsRunningSample SizeScreening procedureSimulateSpecific qualifier valueSystemTechniquesTestingValidationWomanWorkbasecase-basedclinically relevantcomputer aided detectioncost effectivedata acquisitiondata modelingdesignimage processingmalignant breast neoplasmnovelprospectivepublic health relevanceradiologistresponsesymposiumtoolvirtual
项目摘要
DESCRIPTION (provided by applicant): The research involves measuring imaging system performance in tasks such as detecting breast cancer. Receiver operating characteristic (ROC) methodology, the current gold-standard, uses patient-level information that a woman has suspected breast cancer. The location-specific free-response ROC (FROC) method uses additional location-level information in the radiologist's report, e.g., the cancer is in the left breast and is present at a particular location. Progress during the funded period has resulted in a novel perceptually-based FROC model and data simulator and several validated methods for analyzing data which are applicable to human observers and computer aided detection (CAD) algorithms. Papers using the PI's ideas and software are being presented in increasing numbers at conferences and in journals, and his work has generated healthy debate. The overall goal of the competing renewal project is to continue advancing the state-of-the-art in this field by addressing a number of limitations of current methods. Specific Aim 1: The figure-of-merit (FOM) is a critical determinant of statistical power and clinical relevance but all current FOMs are lesion-based and cases with more lesions contribute more to the FOM than cases with fewer lesions, and clinically less important lesions contribute equally as more important ones; we will develop novel case-based FOMs that overcome these limitations. Specific Aim 2: A realistic simulator yields confidence in methodology validation using that simulator. We will extend the current simulator by incorporating more realistic correlation effects and we will develop methodology to calibrate the simulator to real datasets thereby allowing the methodology developer to tune the simulator to specific applications. The simulator will be used to validate the different methods of analysis developed in Aim 1. Specific Aim 3: We will address several practical issues with current FROC methodology: arbitrariness of the proximity criterion, i.e., how close a mark must be to a lesion in order to credit the observer for a true detection; lack of sample-size estimation methodology for planning prospective studies; and lack of methods for analyzing clinically realistic data acquisition scenarios such as multiple views and breasts and multiple lesion types per case. Specific Aim 4: We will validate the methodology using independently acquired ROC, FROC and outcome-data in mammography. Outcome is defined as GOOD for normal cases returned to screening or abnormal cases sent to biopsy and BAD otherwise. We will test the hypothesis that FROC better correlates with outcome and yields greater statistical power than ROC. The significance is that the field is increasingly moving towards location-specific analyses, because of its intrinsic appeal and clinical realism, therefore methodology capable of analyzing the complex data, well outside the scope of the current gold-standard, is urgently needed. Patients benefit from better designed and optimized equipment leading to early diagnosis and treatment of cancers. Health care benefits because more efficient and cost-effective studies become possible which could serve as surrogates for expensive clinical trials.
PUBLIC HEALTH RELEVANCE: The research involves measuring imaging system performance in tasks such as detecting breast cancer where the current gold-standard uses information that a woman is suspected to have breast cancer, but the proposed new method uses additional information, e.g., the suspected cancer is in the left breast at a particular location, thereby yielding a more precise and clinically relevant measurement of performance. Patients benefit from better designed and optimized equipment leading to early diagnosis and treatment of cancers. Health care benefits because more efficient and cost-effective studies become possible which could serve as surrogates for expensive clinical trials.
描述(由申请人提供):该研究涉及测量成像系统在检测乳腺癌等任务中的性能。接受者工作特征(ROC)方法是目前的金标准,它使用的是女性疑似乳腺癌的患者水平信息。位置特异性自由反应ROC (FROC)方法在放射科医生的报告中使用额外的位置水平信息,例如,癌症在左乳房,并且出现在特定位置。在资助期间的进展导致了一种新的基于感知的FROC模型和数据模拟器,以及几种适用于人类观察者和计算机辅助检测(CAD)算法的有效数据分析方法。使用PI的想法和软件的论文越来越多地出现在会议和期刊上,他的工作也引发了有益的辩论。竞争更新项目的总体目标是通过解决当前方法的一些局限性,继续推进该领域的最新技术。具体目标1:优点图(FOM)是统计能力和临床相关性的关键决定因素,但目前所有的优点图都是基于病变的,病变多的病例比病变少的病例对优点图的贡献更大,临床上不太重要的病变和更重要的病变对优点图的贡献相同;我们将开发新的基于案例的表单来克服这些限制。具体目标2:一个真实的模拟器产生使用该模拟器的方法学验证的信心。我们将通过整合更现实的相关效果来扩展当前的模拟器,我们将开发方法来校准模拟器到真实的数据集,从而允许方法开发人员调整模拟器到特定的应用程序。模拟器将用于验证Aim 1中开发的不同分析方法。具体目标3:我们将解决当前FROC方法的几个实际问题:接近标准的随向性,即标记必须与病变有多近才能将观察者视为真实检测;缺乏规划前瞻性研究的样本量估计方法;缺乏分析临床真实数据采集场景的方法,如每例多视图、多乳房和多病变类型。具体目标4:我们将使用独立获得的ROC、FROC和乳房x线摄影结果数据来验证该方法。结果定义为正常病例返回筛查为GOOD,异常病例送去活检为BAD。我们将检验FROC与结果更好相关的假设,并产生比ROC更大的统计能力。重要的是,由于其内在吸引力和临床现实性,该领域正日益朝着特定地点分析的方向发展,因此迫切需要能够分析复杂数据的方法,远远超出当前黄金标准的范围。患者受益于更好的设计和优化的设备,从而早期诊断和治疗癌症。医疗保健受益,因为更有效和更具成本效益的研究成为可能,可以替代昂贵的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEV P CHAKRABORTY其他文献
DEV P CHAKRABORTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEV P CHAKRABORTY', 18)}}的其他基金
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
8054220 - 财政年份:2008
- 资助金额:
$ 40.41万 - 项目类别:
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
7504345 - 财政年份:2008
- 资助金额:
$ 40.41万 - 项目类别:
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
7799280 - 财政年份:2008
- 资助金额:
$ 40.41万 - 项目类别:
New Methods for Analysis of Eye-tracking Data for Medical Image Perception Resear
医学图像感知研究眼动追踪数据分析新方法
- 批准号:
7636755 - 财政年份:2008
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
6956859 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7103678 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7780213 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
8426180 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7234339 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
Observer Studies Involving Search: Modeling and Analysis
涉及搜索的观察者研究:建模和分析
- 批准号:
7425830 - 财政年份:2005
- 资助金额:
$ 40.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




