"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
基本信息
- 批准号:7432500
- 负责人:
- 金额:$ 31.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnisotropyAppearanceAtlasesBiologicalBiological Neural NetworksBrainCharacteristicsClassClinicalComputer softwareConditionCraniocerebral TraumaDataData SetDiffusionDiffusion Magnetic Resonance ImagingDrug FormulationsEntropyEpilepsyEpileptogenesisEquilibriumEventFacility Construction Funding CategoryFiberFunctional Magnetic Resonance ImagingGoalsHeartHippocampus (Brain)HistologyImageImage AnalysisInfectionInvasiveLabelLimbic SystemMagnetic Resonance ImagingMapsMeasuresMetricModelingNeighborhoodsPathologyPatientsPharmaceutical PreparationsProbabilityProcessPropertyPurposeRattusRecurrenceResearchResolutionSchemeSclerosisSeizuresShapesSignal TransductionSolutionsStagingStatus EpilepticusStructureSyndromeTestingThinkingTimeValidationVisionWaterWeightWorkbasedensitydentate gyrusin vivoinjuredinterestmathematical modelnovelpreventresearch studytoolvector
项目摘要
DESCRIPTION (provided by applicant): Epilepsy consists of more than 40 clinical syndromes affecting 50 million people worldwide. Approximately 25 to 30% of the patients receiving medication have inadequate seizure control. Progressive changes are suggested by the existence of a so-called silent interval, often years in duration, between CNS infection, head trauma, or prolonged seizure (status epilepticus) and the later appearance of epilepsy. This process is known as epileptogenesis and is thought of as a cascade of dynamic biological events altering the balance between excitation and inhibition in neural networks. Understanding these changes is key to preventing the onset of epilepsy. To this end, high angular resolution diffusion weighted MR-imaging (HARDI) offers the possibility to non-invasively track structural changes in limbic structures (dentate gyrus etc.). Our goal is to develop mathematical models and efficient algorithms to process HARDI data acquired from rat brains that have been imaged during the epileptogenetic period and derive structural signatures that can be used to predict the onset of epilepsy. Note that there is no precedence to this work on structural signatures for use in prediction of the onset of epilepsy.
Our mathematical model characterizes multiple fiber tracts at a voxel by a continuous probability density over 2-tensors instead of the now popular multi-tensor model. In the absence of multiple fibers at a voxel, the proposed density model defaults to a Gaussian which characterizes the presence of a single fiber. The novelty of this formulation lies in relating the signal and the probability density of the 2-tensors via the well known Laplace transform and for the Wishart densities, leads to a closed form solution. Additionally we propose to segment the 3D lattice of probability densities to extract the ROI and map out the fibers which will be validated using histology data. Several novel properties (Renyi entropy etc.) constituting the structural signature characterizing the epileptogenetic period will then be computed from the segmented ROI. These features will then be used in a Kernel-based clustering to label clusters over the epileptogenetic period. Prediction will then be achieved for a novel data set via a Bayesian optimization scheme. Validation of the prediction results will be done on data for which onset times of epilepsy are already known. The proposed research will significantly advance our understanding of limbic system reorganization caused not only by prolonged seizures, but also the effects of recurrent seizures and further hippocampus damage.
描述(申请人提供):癫痫由40多种临床症状组成,影响全球5000万人。在接受药物治疗的患者中,约有25%至30%的癫痫发作控制不足。渐进性变化是指在中枢神经系统感染、头部创伤或长期癫痫发作(癫痫持续状态)和后来出现癫痫之间存在所谓的沉默间隔,通常持续数年。这个过程被称为癫痫发生,被认为是一系列动态的生物事件,改变了神经网络中兴奋和抑制之间的平衡。了解这些变化是预防癫痫发作的关键。为此,高角分辨率磁共振扩散加权成像(HARDI)提供了无创追踪边缘结构(齿状回等)结构变化的可能性。我们的目标是开发数学模型和有效的算法来处理从大鼠大脑获取的在癫痫发生期间成像的Hardi数据,并获得可用于预测癫痫发作的结构特征。请注意,在用于预测癫痫发作的结构特征方面,这项工作没有先例可循。
我们的数学模型用2张量上的连续概率密度来描述体素上的多个纤维束,而不是现在流行的多张量模型。在体素上没有多个纤维的情况下,所提出的密度模型默认为高斯,它描述了单个纤维的存在。这个公式的新奇之处在于通过众所周知的拉普拉斯变换将信号和2张量的概率密度联系起来,并且对于Wishart密度,得到了闭合形式的解。此外,我们建议分割概率密度的3D点阵来提取ROI并绘制出纤维,这将使用组织学数据进行验证。几个新的性质(Renyi熵等)然后,将从分割的ROI计算构成表征癫痫发生周期的结构特征。然后,这些特征将被用于基于核的聚类,以标记癫痫发生期间的簇。然后,将通过贝叶斯优化方案实现对新数据集的预测。预测结果的验证将在癫痫发作时间已知的数据上进行。这项拟议的研究将极大地促进我们对边缘系统重组的理解,不仅是由于长时间的癫痫发作,而且还包括反复癫痫发作和进一步的海马区损伤的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baba C Vemuri其他文献
Baba C Vemuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baba C Vemuri', 18)}}的其他基金
Higher Order Convolutional Neural Network for Classification of Lewy-body Diseases and Alzheimers Disease
用于路易体病和阿尔茨海默病分类的高阶卷积神经网络
- 批准号:
10363781 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8628880 - 财政年份:2010
- 资助金额:
$ 31.32万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8239526 - 财政年份:2010
- 资助金额:
$ 31.32万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
7903516 - 财政年份:2010
- 资助金额:
$ 31.32万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8432789 - 财政年份:2010
- 资助金额:
$ 31.32万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8042555 - 财政年份:2010
- 资助金额:
$ 31.32万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7627949 - 财政年份:2006
- 资助金额:
$ 31.32万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7216447 - 财政年份:2006
- 资助金额:
$ 31.32万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7263887 - 财政年份:2006
- 资助金额:
$ 31.32万 - 项目类别:
Algorithms for Automatic Fiber Tract Mapping in the CNS
CNS 中自动纤维束映射的算法
- 批准号:
6624055 - 财政年份:2002
- 资助金额:
$ 31.32万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.32万 - 项目类别:
Research Grant














{{item.name}}会员




