Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
基本信息
- 批准号:8628880
- 负责人:
- 金额:$ 49.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Algebraic GeometryAlgorithmsAtlasesBehaviorBehavioralCategoriesCharacteristicsClassificationCommunitiesContusionsDataData CollectionData SetDevelopmentDevicesDiffusionDiffusion Magnetic Resonance ImagingDiffusion weighted imagingDistantFiberGeometryGoalsHumanImage AnalysisImageryIn VitroInjuryLabelLearningLeftLightLiteratureLocomotionLocomotor RecoveryMRI ScansMachine LearningMagnetic Resonance ImagingMethodsMetricModelingMotorNeuraxisPatternPopulationPopulation ControlPopulation RegistersProbabilityProcessPropertyRattusRecoveryRecovery of FunctionResearchResolutionSamplingSensorySeveritiesSolutionsSorting - Cell MovementSpinalSpinal CordSpinal cord injuryStagingStaining methodStainsStructural ModelsStructureTechniquesTestingTimeTraumatic Brain InjuryValidationWaterWeightbaseclinically relevantdensityexpectationfiber cellimaging modalityin vivoinjuredinterestmembermorphometrynovelpublic health relevancesensorstatisticstransmission process
项目摘要
DESCRIPTION (provided by applicant): Establishing structure-function correlations is fundamental to understanding how information is processed in the central nervous system (CNS). Axonal connectivity is a key relationship that facilitates information transmission and reception within the CNS. Recently, diffusion weighted magnetic resonance imaging (DW-MRI) methods have been shown to provide fundamental information required for viewing structural connectivity and have allowed visualization of fiber bundles in the CNS in vivo. In this project, we propose to develop methods for extraction and analysis of these patterns from high angular resolution diffusion weighted images (HARDI) that is known to have better resolving power over diffusion tensor imaging (DTI). To this end, a biologically relevant and clinically important model has been chosen to study changes in the organization of fibers in the intact and injured spinal cord. Our hypothesis is that, changes in geometrical properties of the anatomical substrate, identifying the region of injury and neuroplastic changes in distant spinal segments, correlate with different magnitudes of injury and levels of locomotor recovery following spinal cord injury (SCI). Prior to hypothesis testing, we will denoise the HARDI data and then construct a normal atlas cord. Deformable registration and tensor morphometry between a normal atlas and an injured cord would be performed to provide a distinct signature for each type of behavior recovery associated with the SCI substrate. Validation of the hypothesis will be performed through systematic histological analysis of cord samples following acquisition of the HARDI data. Spinal cords will be cut and stained with fiber and cell stains to verify changes in anatomical organization that result from contusive injury (common in humans as well) to the spinal cord. A comparison between anatomical characteristics obtained from histological versus HARDI analysis will provide validation for the image analysis and the hypothesis. Three severities of spinal cord injuries will be produced (light, mild and moderate contusions) based upon normed injury device parameters. The structural signatures of these labeled data subsets will then be identified. Automatic classification of novel & injured cord HARDI data sets will then be achieved using a large margin classifier. Finally, HARDI data acquired over time will be analyzed in order to learn and predict the level of locomotor recovery by studying the structural changes over time and developing a dynamic model of structural transformations corresponding to each chosen class. We will use an auto-regressive model in the feature space to track and predict structural changes in SCI and correlate it to functional recovery.
描述(由申请人提供):建立结构-功能相关性对于理解中枢神经系统(CNS)如何处理信息至关重要。轴突连接是促进中枢神经系统内信息传输和接收的关键关系。最近,扩散加权磁共振成像(DW-MRI)方法已被证明可以提供观察结构连接性所需的基本信息,并允许体内中枢神经系统纤维束的可视化。在这个项目中,我们建议开发从高角分辨率扩散加权图像(HARDI)中提取和分析这些图案的方法,众所周知,该图像比扩散张量成像(DTI)具有更好的分辨率。为此,选择了一种具有生物学相关性和临床意义的模型来研究完整和受损脊髓中纤维组织的变化。我们的假设是,解剖基质的几何特性的变化,识别损伤区域和远处脊柱节段的神经塑性变化,与脊髓损伤(SCI)后不同程度的损伤和运动恢复水平相关。在进行假设检验之前,我们将对 HARDI 数据进行去噪,然后构建正常的图谱线。将在正常寰椎和受伤脊髓之间进行变形配准和张量形态测量,为与 SCI 基质相关的每种类型的行为恢复提供独特的特征。获取 HARDI 数据后,将通过对脐带样本进行系统组织学分析来验证该假设。脊髓将被切割并用纤维和细胞染色剂染色,以验证脊髓挫伤(在人类中也常见)导致的解剖组织变化。通过组织学分析与 HARDI 分析获得的解剖特征之间的比较将为图像分析和假设提供验证。根据规范的损伤装置参数,将产生三种严重程度的脊髓损伤(轻度、轻度和中度挫伤)。然后将识别这些标记数据子集的结构特征。然后,将使用大余量分类器来实现新的和受损的脐带 HARDI 数据集的自动分类。最后,将分析随时间推移获得的 HARDI 数据,以便通过研究随时间推移的结构变化并开发与每个所选类别相对应的结构转变动态模型来学习和预测运动恢复水平。我们将在特征空间中使用自回归模型来跟踪和预测 SCI 的结构变化,并将其与功能恢复相关联。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AN OVER-COMPLETE DICTIONARY BASED REGULARIZED RECONSTRUCTION OF A FIELD OF ENSEMBLE AVERAGE PROPAGATORS.
- DOI:10.1109/isbi.2012.6235711
- 发表时间:2012-07-12
- 期刊:
- 影响因子:0
- 作者:Ye W;Vemuri BC;Entezari A
- 通讯作者:Entezari A
Tracking on the Product Manifold of Shape and Orientation for Tractography from Diffusion MRI.
- DOI:10.1109/cvpr.2014.390
- 发表时间:2014-06
- 期刊:
- 影响因子:0
- 作者:Wang Y;Salehian H;Cheng G;Vemuri BC
- 通讯作者:Vemuri BC
Multi-class DTI Segmentation: A Convex Approach.
多类 DTI 分割:凸方法。
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Xie,Yuchen;Chen,Ting;Ho,Jeffrey;Vemuri,BabaC
- 通讯作者:Vemuri,BabaC
Tractography from HARDI using an intrinsic unscented Kalman filter.
- DOI:10.1109/tmi.2014.2355138
- 发表时间:2015-01
- 期刊:
- 影响因子:10.6
- 作者:Cheng G;Salehian H;Forder JR;Vemuri BC
- 通讯作者:Vemuri BC
A Riemannian framework for matching point clouds represented by the Schrödinger distance transform.
- DOI:10.1109/cvpr.2014.486
- 发表时间:2014-06
- 期刊:
- 影响因子:0
- 作者:Deng Y;Rangarajan A;Eisenschenk S;Vemuri BC
- 通讯作者:Vemuri BC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baba C Vemuri其他文献
Baba C Vemuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baba C Vemuri', 18)}}的其他基金
Higher Order Convolutional Neural Network for Classification of Lewy-body Diseases and Alzheimers Disease
用于路易体病和阿尔茨海默病分类的高阶卷积神经网络
- 批准号:
10363781 - 财政年份:2022
- 资助金额:
$ 49.45万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8239526 - 财政年份:2010
- 资助金额:
$ 49.45万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
7903516 - 财政年份:2010
- 资助金额:
$ 49.45万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8432789 - 财政年份:2010
- 资助金额:
$ 49.45万 - 项目类别:
Automated Assessment of Structural Changes & Functional Recovery Post Spinal Inju
结构变化的自动评估
- 批准号:
8042555 - 财政年份:2010
- 资助金额:
$ 49.45万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7627949 - 财政年份:2006
- 资助金额:
$ 49.45万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7432500 - 财政年份:2006
- 资助金额:
$ 49.45万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7216447 - 财政年份:2006
- 资助金额:
$ 49.45万 - 项目类别:
"CRCNS" Automatic Prediction of the Onset of Epilepsy via Analysis of HARD-MRI
“CRCNS”通过 HARD-MRI 分析自动预测癫痫发作
- 批准号:
7263887 - 财政年份:2006
- 资助金额:
$ 49.45万 - 项目类别:
Algorithms for Automatic Fiber Tract Mapping in the CNS
CNS 中自动纤维束映射的算法
- 批准号:
6624055 - 财政年份:2002
- 资助金额:
$ 49.45万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 49.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




