Distributed Intelligent Learning Environment for Mammographic Screening
乳腺X线筛查分布式智能学习环境
基本信息
- 批准号:EP/E033490/1
- 负责人:
- 金额:$ 40.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Breast cancer is one of the major causes of death in the modern world. In the UK there is a national screening programme which women between ages of 50 and 70 can attend. Breast cancer screening involves taking breast X-Rays (called mammograms) and examining them for signs of cancer. The idea is that if cancers are detected and treated early (before there are noticeable symptoms) then treatments can be more effective. Examining mammograms for cancer is a highly skilled job carried out by trained radiologists who have to detect what are often very subtle abnormalities occurring only in a small proportion of the cases they examine. Our research will explore how computers can be effectively used to train radiologists to undertake the demanding task of breast screening. To do this we will develop and test an Intelligent Tutoring and e-Learning Environment (ITeLE) to provide instruction, support, practice and feedback for trainee radiologists intending to specialize in mammography.Although computer-based training tools have been developed for branches of radiology other than mammography, few have progressed to widespread and routine use. This is because the development of successful computer-based training systems presents us with a number of problems of different kinds, requiring different approaches and methods for their solution. To develop the ITeLE, we propose to use an interdisciplinary approach that draws upon and brings together insights from psychology, sociology and computer science, in the following ways:Cognitive psychology is concerned with how humans process information, and tells us how radiologists with different levels of skill approach the problem of interpreting medical images. Previous work has shown how, for example, novice radiologists are more likely to interpret images by applying rules that describe the difference between normal and abnormal features in an image. As they gain in experience, however, they come to rely more on matching features in the image in front of them with their memory of the many examples of similar features seen during their career. Psychology, then, gives us clues as to the sorts of training might be most appropriate as trainees' experience increases, which can be incorporated into an intelligent tutoring tool: initially tutorials to teach the rules of interpretation, followed by exercises giving trainees practice at distinguishing normal and abnormal presentations, progressing finally to simulating screening conditions where trainees would have to spot a variety of abnormal cases 'hidden' amongst normal ones.e-Learning environments need to be designed with an understanding of the work practices and expertise that they aim to support. We will draw upon the methods of sociology to understand the practical details of radiology training. By observing the work of training and the circumstances in which it takes place, and by involving trainees and mentors closely in the design and development of the ITeLE, we aim to produce an e-Learning environment that closely matches their needs, and which they find easy to understand and use. In this way, we can ensure that the tools we develop on the basis of our understandings of psychology are both useful and usable in practice.e-Learning environments make it possible to build a record of trainee decisions, including cases or features in the image they have struggled to identify correctly. Using methods from artificial intelligence (a branch of computer science), we intend to explore how this information can be used to automatically produce feedback (for example, indicating where a trainee's strengths and weaknesses lie) and advice (for example, concerning what tasks it would be appropriate for a trainee to tackle next). In the final stages of the project, we will undertake an evaluation of the ITeLE to demonstrate the effectiveness of the intelligent tutoring tool and of the different training strategies.
乳腺癌是现代世界的主要死亡原因之一。英国有一个全国性的筛查计划,50至70岁的妇女可以参加。乳腺癌筛查包括拍摄乳房X光片(称为乳房X光片)并检查它们是否有癌症的迹象。这个想法是,如果癌症被发现和治疗早期(之前有明显的症状),那么治疗可以更有效。检查乳房X光片中的癌症是一项高技能的工作,由训练有素的放射科医生进行,他们必须检测出通常只在他们检查的一小部分病例中发生的非常微妙的异常。我们的研究将探讨如何有效地利用计算机来培训放射科医生承担乳房筛查的艰巨任务。为此,我们将开发和测试智能辅导和电子学习环境(ITeLE),为打算专门从事乳腺X线摄影的实习放射科医生提供指导,支持,实践和反馈。尽管基于计算机的培训工具已被开发用于乳腺X线摄影以外的放射学分支,但很少有进展到广泛和常规使用。这是因为成功的基于计算机的培训系统的开发给我们带来了许多不同类型的问题,需要不同的方法和方法来解决。为了开发ITeLE,我们建议使用跨学科的方法,以以下方式借鉴并汇集心理学、社会学和计算机科学的见解:认知心理学关注人类如何处理信息,并告诉我们具有不同水平的放射科医生如何处理信息。技能解决解释医学图像的问题。以前的工作已经表明,例如,新手放射科医生更有可能通过应用描述图像中正常和异常特征之间差异的规则来解释图像。然而,随着经验的积累,他们越来越依赖于将面前图像中的特征与他们在职业生涯中看到的许多相似特征的例子相匹配。因此,心理学为我们提供了线索,告诉我们随着受训者经验的增加,哪种培训可能是最合适的,这可以纳入智能辅导工具:首先是讲授口译规则的教程,然后是练习,让学员练习区分正常和不正常的陈述,最后,模拟筛查条件,受训者必须发现各种“隐藏”在正常病例中的异常病例。学习环境的设计需要了解他们旨在支持的工作实践和专业知识。我们将利用社会学的方法来了解放射学培训的实际细节。通过观察培训工作及其发生的情况,并通过让学员和导师密切参与ITeLE的设计和开发,我们的目标是创造一个紧密匹配他们需求的电子学习环境,并且他们发现易于理解和使用。通过这种方式,我们可以确保我们根据对心理学的理解开发的工具在实践中既有用又可用。电子学习环境可以建立学员决策的记录,包括他们努力正确识别的图像中的案例或特征。使用人工智能(计算机科学的一个分支)的方法,我们打算探索如何使用这些信息来自动产生反馈(例如,指出受训者的强项和弱点)和建议(例如,关于受训者下一步应该处理什么任务)。在项目的最后阶段,我们将对ITeLE进行评估,以证明智能辅导工具和不同培训策略的有效性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computer-Supported Cooperative Learning for Mammography
计算机支持的乳房 X 线摄影协作学习
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Alison Gilchrist
- 通讯作者:Alison Gilchrist
Reading the lesson: eliciting requirements for a mammography training application
阅读课程:引出乳房 X 光检查培训应用程序的要求
- DOI:10.1117/12.813920
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Hartswood M
- 通讯作者:Hartswood M
Computer-Supported Collaborative Learning at the Workplace
工作场所计算机支持的协作学习
- DOI:10.1007/978-1-4614-1740-8_6
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Hartswood M
- 通讯作者:Hartswood M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Taylor其他文献
Empirical investigation into the use of complexity levels in marketing segmentation and the categorisation of new automotive products
对营销细分和新汽车产品分类中复杂性级别使用的实证研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Paul Taylor - 通讯作者:
Paul Taylor
Segmenting for complexity: persuading people to buy what they don't understand
针对复杂性进行细分:说服人们购买他们不理解的东西
- DOI:
10.1080/0965254x.2013.790470 - 发表时间:
2013 - 期刊:
- 影响因子:4.1
- 作者:
Paul Taylor;James R. Saker;D. Champion - 通讯作者:
D. Champion
Comparative phosphoproteomic analysis of the mouse testis reveals changes in phosphopeptide abundance in response to Ppp1cc deletion
小鼠睾丸的比较磷酸蛋白质组学分析揭示了 Ppp1cc 缺失导致磷酸肽丰度的变化
- DOI:
10.1016/j.euprot.2013.11.009 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
G. Macleod;Paul Taylor;Lucas A. Mastropaolo;S. Varmuza - 通讯作者:
S. Varmuza
Text-to-Speech Synthesis
- DOI:
10.1017/cbo9780511816338.020 - 发表时间:
2009-03 - 期刊:
- 影响因子:0
- 作者:
Paul Taylor - 通讯作者:
Paul Taylor
The Evolving Menace of Ransomware: A Comparative Analysis of Pre-pandemic and Mid-pandemic Attacks
勒索软件不断演变的威胁:大流行前和大流行中期攻击的比较分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Lang;L. Connolly;Paul Taylor;Phillip J. Corner - 通讯作者:
Phillip J. Corner
Paul Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Taylor', 18)}}的其他基金
Interventions to improve maternal metabolic profile in obese pregnancy and prevent cardio-metabolic and behavioural deficits in future generations
改善肥胖妊娠期间母亲代谢状况并预防后代心脏代谢和行为缺陷的干预措施
- 批准号:
MR/N029259/1 - 财政年份:2017
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
CREST: Centre for Research and Evidence on Security Threats
CREST:安全威胁研究和证据中心
- 批准号:
ES/N009614/1 - 财政年份:2015
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
ENFORCE - Extreme responses using NewWave: Forces, Overtopping and Run-up in Coastal Engineering
ENFORCE - 使用 NewWave 的极端响应:海岸工程中的力、越顶和爬升
- 批准号:
EP/K024108/1 - 财政年份:2013
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
SMARTY - Supergen MARrine TechnologY challenge
SMARTY - Supergen MARrine 技术挑战
- 批准号:
EP/J010316/1 - 财政年份:2012
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
A Computational Approach to Solvent Selection for Tandem Reactions: A Tool for Process Intensification
串联反应溶剂选择的计算方法:过程强化的工具
- 批准号:
EP/E000878/1 - 财政年份:2007
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
Introduction of Inductively Coupled Plasma Spectroscopy to Undergraduate Students
向本科生介绍电感耦合等离子体光谱
- 批准号:
9352152 - 财政年份:1993
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
Modernization of Instrumental Analysis Laboratory
仪器分析实验室现代化
- 批准号:
8012745 - 财政年份:1980
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Cooperative Agreement
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
Tax on Demand - Empowering Accountants to Better Advise SMEs Using Machine Learning and Intelligent Automation.
按需征税 - 使会计师能够利用机器学习和智能自动化为中小企业提供更好的建议。
- 批准号:
10056943 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Collaborative R&D
Intelligent Science Stations: Developing Adaptive Mixed-Reality Technology to Enhance Inquiry-based STEM Learning in Schools
智能科学站:开发自适应混合现实技术以增强学校探究式 STEM 学习
- 批准号:
2300734 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant














{{item.name}}会员




