Accurate and Efficient Parsing of Biomedical Text
准确高效的生物医学文本解析
基本信息
- 批准号:EP/E035698/1
- 负责人:
- 金额:$ 26.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural Language Processing is a branch of Artificial Intelligence concerned with using computers to automatically process and understand natural languages. Natural language refers to languages such as English, French, German, etc., rather than artificial computer programming languages. There are a number of reasons why this will be an important technology in the 21st century. First, computers are gaining increasing importance in our society, and being able to communicate with them in a natural way, using spoken and written language, will become more desirable. Second, we are producing very large amounts of online electronic information; we require tools which can automatically process this information, to summarise it, to answer questions about it, to translate it, to find relevant documents within it. The staggering rise of Google demonstrates the importance of this kind of technology.The proposed research concerns the processing of a particular kind of text, namely the scientific articles produced by the biological research community. Biology produces an enormous number of new articles each year, far too many for any one individual to keep up to date with. Automatic computer tools are required which can process this information. For example, a biologist might want to know whether there is a paper on the Web answering a particular question about some gene.Sophisticated text processing, such as translating a document from one language to another, summarising documents, or answering questions, requires sophisticated language processing tools. A very useful tool for these kinds of tasks is a parser , which automatically determines the grammatical structure of a sentence and how the words in the sentence are related. For example, it would determine the verbs in the sentence, and how the nouns are related to the verbs. This information is needed if a computer is to be able to understand the text.The Natural Language Processing community now has very good parsing technology. However, the existing parsers are good at analysing certain kinds of text, such as newspapers, but not so good at other kinds of text, such as biology research papers. The reason is that the parsers have learned about language from linguistic resources created by humans, and the resources are based on newspaper text. Creating these resources from scratch for biology would take too long, and so the proposed research will investigate ways in which parsers tuned for newpaper text can be ported to handle biological text.
自然语言处理是人工智能的一个分支,它涉及使用计算机自动处理和理解自然语言。自然语言是指英语、法语、德语等语言,而不是人工计算机编程语言。这将成为21世纪世纪的一项重要技术,原因有很多。首先,计算机在我们的社会中越来越重要,能够使用口头和书面语言以自然的方式与它们交流将变得更加理想。第二,我们正在生产非常大量的在线电子信息;我们需要能够自动处理这些信息的工具,来总结它,回答有关它的问题,翻译它,在其中找到相关文档。Google的惊人崛起证明了这种技术的重要性。拟议的研究涉及处理特定类型的文本,也就是生物研究界发表的科学文章。生物学每年产生大量的新文章,任何一个人都无法跟上时代。需要自动计算机工具来处理这些信息。例如,生物学家可能想知道网上是否有一篇论文回答了关于某个基因的特定问题,复杂的文本处理,如将文档从一种语言翻译成另一种语言,总结文档或回答问题,需要复杂的语言处理工具。对于这类任务来说,一个非常有用的工具是解析器,它可以自动确定句子的语法结构以及句子中的单词是如何关联的。例如,它将确定句子中的动词,以及名词与动词的关系。如果计算机能够理解文本,这些信息是必需的。自然语言处理社区现在有非常好的解析技术。然而,现有的分析器只擅长分析某些类型的文本,如报纸,而不擅长分析其他类型的文本,如生物研究论文。原因是解析器从人类创造的语言资源中学习语言,而这些资源是基于报纸文本的。从零开始为生物学创建这些资源将花费太长时间,因此拟议的研究将调查为报纸文本调整的解析器可以移植到处理生物文本的方法。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adapting a Lexicalized-Grammar Parser to Contrasting Domains
- DOI:10.3115/1613715.1613775
- 发表时间:2008-10
- 期刊:
- 影响因子:0
- 作者:Laura Rimell;S. Clark
- 通讯作者:Laura Rimell;S. Clark
Unbounded Dependency Recovery for Parser Evaluation
- DOI:10.3115/1699571.1699619
- 发表时间:2009-08
- 期刊:
- 影响因子:0
- 作者:Laura Rimell;S. Clark;Mark Steedman
- 通讯作者:Laura Rimell;S. Clark;Mark Steedman
Syntactic Processing Using the Generalized Perceptron and Beam Search
使用广义感知器和束搜索进行句法处理
- DOI:10.1162/coli_a_00037
- 发表时间:2011
- 期刊:
- 影响因子:9.3
- 作者:Zhang Y
- 通讯作者:Zhang Y
Cambridge: Parser evaluation using textual entailment by grammatical relation comparison
剑桥:通过语法关系比较使用文本蕴涵进行解析器评估
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Rimell L.
- 通讯作者:Rimell L.
Faster Parsing by Supertagger Adaptation
- DOI:
- 发表时间:2010-07
- 期刊:
- 影响因子:0
- 作者:Jonathan K. Kummerfeld;Jessika Roesner;Tim Dawborn;J. Haggerty;J. Curran;S. Clark
- 通讯作者:Jonathan K. Kummerfeld;Jessika Roesner;Tim Dawborn;J. Haggerty;J. Curran;S. Clark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Clark其他文献
From Conceptual Spaces to Quantum Concepts: Formalising and Learning Structured Conceptual Models
从概念空间到量子概念:形式化和学习结构化概念模型
- DOI:
10.48550/arxiv.2401.08585 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sean Tull;R. A. Shaikh;Sara Sabrina Zemljič;Stephen Clark - 通讯作者:
Stephen Clark
Estimating local car ownership models
- DOI:
10.1016/j.jtrangeo.2006.02.014 - 发表时间:
2007-05 - 期刊:
- 影响因子:6.1
- 作者:
Stephen Clark - 通讯作者:
Stephen Clark
MICROSCOPIC MODELLING OF TRAFFIC MANAGEMENT MEASURES FOR GUIDED BUS OPERATION
用于引导公交车运营的交通管理措施的微观建模
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
R. Liu;Stephen Clark;F. Montgomery;D. Watling - 通讯作者:
D. Watling
Leg posture characteristics in children with Cerebral Palsy during walking and running
- DOI:
10.1016/0021-9290(93)90489-2 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:
- 作者:
Pekka Luhtanen;Esko Mälkiä;Juhani Huhtinen;Pauli Rintala;Stephen Clark - 通讯作者:
Stephen Clark
A classification for English primary schools using open data
使用开放数据对英语小学进行分类
- DOI:
10.18335/region.v7i2.326 - 发表时间:
2020 - 期刊:
- 影响因子:2.1
- 作者:
Stephen Clark;N. Lomax;M. Birkin - 通讯作者:
M. Birkin
Stephen Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Clark', 18)}}的其他基金
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
- 批准号:
EP/T028424/1 - 财政年份:2020
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Emerging correlations from strong driving: a tensor network projection variational Monte Carlo approach to 2D quantum lattice systems
强驱动中出现的相关性:二维量子晶格系统的张量网络投影变分蒙特卡罗方法
- 批准号:
EP/P025110/2 - 财政年份:2018
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Emerging correlations from strong driving: a tensor network projection variational Monte Carlo approach to 2D quantum lattice systems
强驱动中出现的相关性:二维量子晶格系统的张量网络投影变分蒙特卡罗方法
- 批准号:
EP/P025110/1 - 财政年份:2017
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
A Unified Model of Compositional and Distributional Semantics: Theory and Applications
组合语义和分布语义的统一模型:理论与应用
- 批准号:
EP/I037512/1 - 财政年份:2012
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Collaborative Research: Systems of Ordinary Differential Equations - Inverse and Non-Self-Adjoint Problems
合作研究:常微分方程组 - 反函数和非自共轭问题
- 批准号:
0405528 - 财政年份:2004
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)