Emerging correlations from strong driving: a tensor network projection variational Monte Carlo approach to 2D quantum lattice systems
强驱动中出现的相关性:二维量子晶格系统的张量网络投影变分蒙特卡罗方法
基本信息
- 批准号:EP/P025110/2
- 负责人:
- 金额:$ 5.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of the technology we have is based on exploiting special materials like semiconductors. The next revolution is likely to emerge from so-called quantum materials. However, while their behaviour has the potential to be extremely useful, it is also complex to understand and control. Insights gained from this research will help determine the viability of controlling quantum materials with light and the possible exploitation of dynamical non-equilibrium properties in future nano-devices. Controlling materials with light is interesting because it is well known that driven systems can exhibit behaviour not seen when stationary. There are two simple examples of this. The first is a so-called Kapitza pendulum. This is a normal pendulum whose pivot point undergoes vertical oscillations that are rapid but small in amplitude. What is striking about this pendulum is that the inverted position, normally unstable to gravity, is dynamically stabilised by the periodic driving. The second is a ball on a rotating saddle. The ball cannot be stably positioned at the inflection point when the saddle is stationary. However, if the saddle is rotated above some threshold angular velocity then the ball can be balanced in the time-averaged bowl swept out by the saddle. The same ideas apply to many-body systems like materials and it is becoming increasingly relevant to study their behaviour.An important class of many-body systems are those that exhibit strong correlations due to interactions between their constituents. The everyday world is full of such systems. For example traffic jams form along roads due to a combination of many vehicles and a strong repulsion between them to avoid occupying the same piece of road. However, ants marching in a line never suffer from such traffic jams despite facing very similar restrictions because they don't overtake one another. These two examples demonstrate how subtle differences in the precise microscopic nature of interactions may lead to qualitatively different macroscopic properties. Describing such correlations poses major challenges for the theoretical study of interacting systems, and no more so than for the case of quantum systems. In the quantum case strong interactions lead to some of the least well-understood phenomena of condensed matter, like high-Tc superconductivity, frustration, and topological phases such as fractional quantum Hall physics. These effects only appear at low temperatures and typically in materials with a dominant two-dimensional character.Since quantum materials exhibit functional properties there is a major research effort to stabilise and optimise them at higher temperatures for future technological applications. A recent approach to this is to periodically drive a many-body quantum system to "dynamically stabilise" macroscopic quantum effects beyond where they occur in equilibrium. The question is made even more compelling by spectacular advances in high-field THz generation technology. This allows selective driving of low-energy excitations of real solids, like vibrations, enabling a crystal lattice to be shaken, modulated or distorted in controlled ways. This has created an exciting interface between driven systems and many-body physics engaging a large body of researchers worldwide.A crucial issue hampering the use of periodic driving in engineering materials is heating that might wash out the desired effects. This project examines this problem within the context of one of the most important model Hamiltonians, the Hubbard model, which captures the essential physics of strong correlations. Current numerical methods struggle to give a conclusive answer to this issue. A unique feature of this project will be the development of a combined Monte Carlo and tensor network approach potentially rich enough to accurately describe the dynamical behaviour of the driven Hubbard model. The resulting high performance software will be publically available.
我们拥有的大部分技术都是基于开发特殊材料,如半导体。下一场革命可能来自所谓的量子材料。然而,虽然它们的行为有可能非常有用,但理解和控制也很复杂。从这项研究中获得的见解将有助于确定用光控制量子材料的可行性,以及在未来纳米器件中可能利用动态非平衡特性。用光控制材料是有趣的,因为众所周知,驱动系统可以表现出静止时看不到的行为。这里有两个简单的例子。第一个是所谓的卡皮查摆。这是一个正常的摆,其支点经历快速但振幅小的垂直振荡。这个摆的惊人之处在于,通常对重力不稳定的倒立位置通过周期性驱动而动态稳定。第二个是一个旋转鞍上的球。当鞍座静止时,球不能稳定地定位在拐点处。然而,如果鞍座旋转超过某个阈值角速度,则球可以在由鞍座扫出的时间平均碗中平衡。同样的想法也适用于材料等多体系统,研究它们的行为变得越来越重要。一类重要的多体系统是那些由于其成分之间的相互作用而表现出强相关性的系统。日常生活中充满了这样的系统。例如,由于许多车辆的组合以及它们之间的强烈排斥以避免占用同一条道路,因此沿着沿着形成交通堵塞。然而,尽管蚂蚁们面临着非常相似的限制,但排成一行的蚂蚁却从来没有遇到过这样的交通堵塞,因为它们不会互相超过。这两个例子表明,相互作用的精确微观性质的细微差异可能导致定性不同的宏观性质。描述这样的关联性对相互作用系统的理论研究提出了重大挑战,而量子系统的情况也是如此。在量子的情况下,强相互作用导致了凝聚态物质中一些最不容易理解的现象,如高Tc超导,挫折和拓扑相,如分数量子霍尔物理。这些效应仅在低温下出现,并且通常出现在具有主导二维特征的材料中。由于量子材料具有功能特性,因此需要进行重大研究来在更高温度下稳定和优化它们,以用于未来的技术应用。最近的一种方法是周期性地驱动多体量子系统,以“动态稳定”宏观量子效应,使其超出平衡状态。高场太赫兹产生技术的惊人进步使这个问题变得更加引人注目。这允许选择性地驱动真实的固体的低能量激发,如振动,使得晶格能够以受控的方式被摇动、调制或扭曲。这在驱动系统和多体物理学之间创造了一个令人兴奋的界面,吸引了全球大量的研究人员。阻碍在工程材料中使用周期性驱动的一个关键问题是加热,这可能会消除所需的效果。这个项目在最重要的哈伯德模型(Hubbard model)的背景下研究这个问题,哈伯德模型捕捉了强相关的基本物理学。目前的数值方法很难对这个问题给出一个结论性的答案。该项目的一个独特之处将是开发一种结合蒙特卡罗和张量网络的方法,这种方法可能足够丰富,可以准确地描述驱动哈伯德模型的动力学行为。由此产生的高性能软件将在计算机上可用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model
- DOI:10.1103/physreva.101.033604
- 发表时间:2019-06
- 期刊:
- 影响因子:2.9
- 作者:M. W. Cook;S. Clark
- 通讯作者:M. W. Cook;S. Clark
Investigation of the non-equilibrium state of strongly correlated materials by complementary ultrafast spectroscopy techniques
- DOI:10.1088/1367-2630/abe272
- 发表时间:2021-03-01
- 期刊:
- 影响因子:3.3
- 作者:Hedayat, H.;Sayers, C. J.;Carpene, E.
- 通讯作者:Carpene, E.
Unifying neural-network quantum states and correlator product states via tensor networks
- DOI:10.1088/1751-8121/aaaaf2
- 发表时间:2018-04-03
- 期刊:
- 影响因子:2.1
- 作者:Clark, Stephen R.
- 通讯作者:Clark, Stephen R.
Ground-state phase diagram of the one-dimensional t - J model with pair hopping terms
具有对跳频项的一维 t - J 模型的基态相图
- DOI:10.1103/physrevb.98.035116
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Coulthard J
- 通讯作者:Coulthard J
Efficient characterisation of large deviations using population dynamics
- DOI:10.1088/1742-5468/aab3ef
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:T. Brewer;S. Clark;R. Bradford;R. Jack
- 通讯作者:T. Brewer;S. Clark;R. Bradford;R. Jack
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Clark其他文献
From Conceptual Spaces to Quantum Concepts: Formalising and Learning Structured Conceptual Models
从概念空间到量子概念:形式化和学习结构化概念模型
- DOI:
10.48550/arxiv.2401.08585 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sean Tull;R. A. Shaikh;Sara Sabrina Zemljič;Stephen Clark - 通讯作者:
Stephen Clark
Estimating local car ownership models
- DOI:
10.1016/j.jtrangeo.2006.02.014 - 发表时间:
2007-05 - 期刊:
- 影响因子:6.1
- 作者:
Stephen Clark - 通讯作者:
Stephen Clark
MICROSCOPIC MODELLING OF TRAFFIC MANAGEMENT MEASURES FOR GUIDED BUS OPERATION
用于引导公交车运营的交通管理措施的微观建模
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
R. Liu;Stephen Clark;F. Montgomery;D. Watling - 通讯作者:
D. Watling
Leg posture characteristics in children with Cerebral Palsy during walking and running
- DOI:
10.1016/0021-9290(93)90489-2 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:
- 作者:
Pekka Luhtanen;Esko Mälkiä;Juhani Huhtinen;Pauli Rintala;Stephen Clark - 通讯作者:
Stephen Clark
A classification for English primary schools using open data
使用开放数据对英语小学进行分类
- DOI:
10.18335/region.v7i2.326 - 发表时间:
2020 - 期刊:
- 影响因子:2.1
- 作者:
Stephen Clark;N. Lomax;M. Birkin - 通讯作者:
M. Birkin
Stephen Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Clark', 18)}}的其他基金
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
- 批准号:
EP/T028424/1 - 财政年份:2020
- 资助金额:
$ 5.78万 - 项目类别:
Research Grant
Emerging correlations from strong driving: a tensor network projection variational Monte Carlo approach to 2D quantum lattice systems
强驱动中出现的相关性:二维量子晶格系统的张量网络投影变分蒙特卡罗方法
- 批准号:
EP/P025110/1 - 财政年份:2017
- 资助金额:
$ 5.78万 - 项目类别:
Research Grant
A Unified Model of Compositional and Distributional Semantics: Theory and Applications
组合语义和分布语义的统一模型:理论与应用
- 批准号:
EP/I037512/1 - 财政年份:2012
- 资助金额:
$ 5.78万 - 项目类别:
Research Grant
Accurate and Efficient Parsing of Biomedical Text
准确高效的生物医学文本解析
- 批准号:
EP/E035698/1 - 财政年份:2007
- 资助金额:
$ 5.78万 - 项目类别:
Research Grant
Collaborative Research: Systems of Ordinary Differential Equations - Inverse and Non-Self-Adjoint Problems
合作研究:常微分方程组 - 反函数和非自共轭问题
- 批准号:
0405528 - 财政年份:2004
- 资助金额:
$ 5.78万 - 项目类别:
Continuing Grant
相似海外基金
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2022
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual
SAFEGENOMES: Strong privacy Assurance For Effective GENOME Sharing
SAFEGENOMES:强大的隐私保证,有效实现基因组共享
- 批准号:
10551263 - 财政年份:2022
- 资助金额:
$ 5.78万 - 项目类别:
Strong Correlations in Cold atoms and Dirac materials
冷原子和狄拉克材料的强相关性
- 批准号:
RGPIN-2019-04434 - 财政年份:2022
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Tuning Topology and Strong Correlations for the Next Generation of Topological Superconductors
职业:调整下一代拓扑超导体的拓扑和强相关性
- 批准号:
2145373 - 财政年份:2022
- 资助金额:
$ 5.78万 - 项目类别:
Continuing Grant
SAFEGENOMES: Strong privacy Assurance For Effective GENOME Sharing
SAFEGENOMES:强大的隐私保证,有效实现基因组共享
- 批准号:
10532442 - 财政年份:2022
- 资助金额:
$ 5.78万 - 项目类别:
Superconductivity in the presence of strong correlations and spin-orbit interactions
存在强相关性和自旋轨道相互作用的超导性
- 批准号:
RGPIN-2017-04873 - 财政年份:2021
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual
Strong Correlations in Cold atoms and Dirac materials
冷原子和狄拉克材料的强相关性
- 批准号:
RGPIN-2019-04434 - 财政年份:2021
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Weak and Strong Correlations in Topological Semimetals
职业:拓扑半金属的弱相关性和强相关性
- 批准号:
2047193 - 财政年份:2021
- 资助金额:
$ 5.78万 - 项目类别:
Continuing Grant
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2021
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual
Strong Correlations in Cold atoms and Dirac materials
冷原子和狄拉克材料的强相关性
- 批准号:
RGPIN-2019-04434 - 财政年份:2020
- 资助金额:
$ 5.78万 - 项目类别:
Discovery Grants Program - Individual