Bond Making and Breaking Processes at Surfaces: Fundamentals of Adsorption and Catalysis

表面的成键和断裂过程:吸附和催化的基础知识

基本信息

  • 批准号:
    EP/E039782/1
  • 负责人:
  • 金额:
    $ 318.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

From the platinum-rhodium catalytic converter in your car exhaust system, to the iron catalyst that turns atmospheric nitrogen into fertilizer, highly-reactive metals are key to many of the most important chemical reactions that drive the modern world. Noxious gases like carbon monoxide or nitric oxide, produced in quantity by the internal combustion engine, would naturally revert to less toxic materials in the atmosphere given enough time, but only after causing significant respiratory problems at ground level on our city streets. Similarly, simply mixing nitrogen and hydrogen at high enough pressures would eventually yield the ammonia essential for agriculture, but impossibly slowly. In each case, and in many, many others, the role of the metal catalyst is to speed up and/or re-direct the reaction, preventing environmental pollution or making important high-value chemicals out of uninteresting low-value ones. It is little wonder that the often rare metals involved, from the transition region in the centre of the periodic table, are amongst the most valuable elements in the world, nor that efforts to understand and to optimise their effects are keenly pursued.In many cases, the chemical reactions important in catalysis happen at the surfaces of solid transition metal particles. Passing molecules settle and stick upon the surface (adsorb), move around on the surface (diffuse) and eventually detach from the surface and float away (desorb); in between these basic steps, the molecules may fall apart on the surface (dissociate) or join together to make new molecules (associate). The detailed chemical interactions between the molecules and the metal surface are crucial in determining the relative rates of these five elementary types of process, meaning that each different metal, and indeed each different exposed facet of a metal crystal, may have different catalytic properties. In our work, we make sophisticated measurements of these processes on extremely well-characterised surfaces under highly-controlled conditions. By comparing these with results from our state-of-the-art theoretical calculations, we are able to build up a complete picture of the surface chemistry, and hence to predict better catalysts for future industrial and environmental use. Increasing use of novel alloys and nanostructured surfaces will be a characteristic of our planned work in this direction.The potential for our kind of fundamental surface science to make a significant impact in real-life situations is reflected in the funding we have attracted from industrial sponsors. In recent years, we have been working with Toyota on iridium-gold catalysts for removal of nitric oxide from automobile exhausts, and we have just begun a collaboration with Johnson Matthey looking at the catalytic activation of methane in the same automotive context. Meanwhile, our planned work with BP Alternative Energy is looking towards optimising the production of hydrogen for fuel cell technology, and Shell Research have just committed to work with us towards new routes for ethylene epoxidation.Looking beyond the current applications of surface catalysis, however, we are also focussing a substantial effort in the direction of so-called asymmetric catalysis. The biological molecules found in living organisms are often characterised by the fact that they are chiral, which is to say that they can exist in two inequivalent mirror-image forms. These mirror-image molecules are indistinguishable from each other by most chemical means, but can have radically different behaviour within the body; in many pharmaceutical contexts, therefore, it is vital that drugs be prepared in a pure chiral state. Our research aims to provide an efficient means to achieve this through the use of intrinsically-chiral metal surfaces, which are cut from their parent crystal in such a way as to induce chirally-selective surface chemistry.
从汽车排气系统中的铂铑催化转化器,到将大气中的氮转化为肥料的铁催化剂,高活性金属是推动现代世界许多最重要化学反应的关键。由内燃机大量产生的一氧化碳或一氧化氮等有害气体,如果有足够的时间,自然会在大气中转化为毒性较低的物质,但只有在我们城市街道的地面上造成严重的呼吸问题之后。同样,简单地将氮气和氢气在足够高的压力下混合,最终将产生农业所必需的氨,但不可能缓慢。在每种情况下,以及在许多其他情况下,金属催化剂的作用是加速和/或重新引导反应,防止环境污染或用无趣的低价值化学品制造重要的高价值化学品。因此,元素周期表中间过渡区的稀有金属是世界上最有价值的元素之一,也就不足为奇了,人们也在努力了解和优化它们的作用。在许多情况下,催化中重要的化学反应发生在固体过渡金属颗粒的表面。经过的分子会沉淀并粘附在表面上(吸附),在表面上移动(扩散),最终从表面分离并漂浮(解吸);在这些基本步骤之间,分子可能会在表面上分解(解离)或结合在一起形成新的分子(缔合)。分子和金属表面之间的详细化学相互作用对于确定这五种基本类型过程的相对速率至关重要,这意味着每种不同的金属,甚至金属晶体的每个不同的暴露面,可能具有不同的催化性能。在我们的工作中,我们在高度受控的条件下,对这些过程进行了精密的测量。通过将这些结果与我们最先进的理论计算结果进行比较,我们能够建立表面化学的完整图像,从而预测未来工业和环境用途的更好催化剂。新型合金和纳米结构表面的应用越来越多,这将是我们在这一方向计划工作的一个特点。我们的基础表面科学在现实生活中产生重大影响的潜力反映在我们从工业赞助商那里吸引的资金上。近年来,我们一直在与丰田合作研究铱金催化剂,用于去除汽车尾气中的一氧化氮,我们刚刚开始与约翰逊万丰合作,研究在相同的汽车环境中甲烷的催化活化。与此同时,我们计划与英国石油公司替代能源公司合作,优化燃料电池技术中的氢气生产,壳牌研究公司刚刚承诺与我们合作开发乙烯环氧化的新路线。除了表面催化目前的应用,我们还将在所谓的不对称催化方面进行大量努力。在活的有机体中发现的生物分子通常以它们是手性的事实为特征,也就是说它们可以以两种不等价的镜像形式存在。这些镜像分子通过大多数化学手段彼此无法区分,但在体内可能具有根本不同的行为;因此,在许多制药环境中,以纯手性状态制备药物至关重要。我们的研究旨在提供一种有效的手段来实现这一目标,通过使用本质手性金属表面,这是从它们的母晶切割的方式,以诱导手性选择性表面化学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Jenkins其他文献

Comparison of Stenting and PTA for Central Venous Stenosis In Hemodialysis Patients
  • DOI:
    10.1016/0735-1097(95)93040-j
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Wassmer;Shabbir Dharamsey;Reynaldo Mulingtapang;Sylvia Griffin;Sam Money;Stephen Jenkins;Christopher White;Stephen Ramee
  • 通讯作者:
    Stephen Ramee
Value Narratives: A Novel Method for Understanding High-Cost Pediatric Hospital Patients.
价值叙述:一种了解高费用儿科医院患者的新方法。
  • DOI:
    10.1542/hpeds.2016-0033
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew G. Smith;Seth Andrews;Victoria L. Wilkins;Theodore V De Beritto;Stephen Jenkins;C. Maloney
  • 通讯作者:
    C. Maloney
Correlations of fibrosis in left ventricular endomyocardial biopsies from patients with aortic valve disease
  • DOI:
    10.1016/0002-9149(81)90758-x
  • 发表时间:
    1981-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Oldershaw;John Coltart;Stephen Jenkins;Michael Webb-Peploe
  • 通讯作者:
    Michael Webb-Peploe
Macrophage effector function in anti-filarial nematode immunity is independent of Arginase 1, Relmα and YM-1
  • DOI:
    10.1016/j.cyto.2009.07.332
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Jenkins;Judith Allen
  • 通讯作者:
    Judith Allen
980-85 Percutaneous Aspiration Thrombectomy: A Novel Way to Recannalize Thrombosed Hemodialysis Access Grafts
  • DOI:
    10.1016/0735-1097(95)92551-f
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reynaldo Mulingtapang;Stephen Jenkins;Peter Wassmer;Sylvia Griffin;Jill Lindberg;Julio Figueroa;Christopher White;Tyrone Collins;Stephen Ramee
  • 通讯作者:
    Stephen Ramee

Stephen Jenkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Jenkins', 18)}}的其他基金

The parameters of tissue-resident macrophage autonomy
组织驻留巨噬细胞自主性的参数
  • 批准号:
    MR/L008076/1
  • 财政年份:
    2014
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Research Grant
Fundamental Sulphur-Chemistry of Molybdenum Carbide Surfaces: Towards Catalytic Exploitation of Transition Metal Carbides
碳化钼表面的基本硫化学:过渡金属碳化物的催化开发
  • 批准号:
    EP/J015261/1
  • 财政年份:
    2012
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Research Grant
Role of Dynamics in Self-Organisation of Amino Acids on Coinage Metal Surfaces
动力学在造币金属表面氨基酸自组织中的作用
  • 批准号:
    EP/J001643/1
  • 财政年份:
    2011
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Research Grant
DISSERTATION RESEARCH: Proximate Causes and Adaptive Significance of Individual Variation in the Behavior of Kangaroo Rats
论文研究:袋鼠行为个体差异的直接原因和适应性意义
  • 批准号:
    0206068
  • 财政年份:
    2002
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant
Behavioral Adaptation to a Desert Environment: An Experimental Comparative Study of Food Hoarding
沙漠环境的行为适应:食物囤积的实验比较研究
  • 批准号:
    9211752
  • 财政年份:
    1992
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Catalytic halogen bonds in enzymatic bond breaking and making in DNA
DNA 中酶促键断裂和形成中的催化卤素键
  • 批准号:
    2203161
  • 财政年份:
    2022
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant
Geometric and Electronic Structure Contributions to Bond-breaking and Bond-making Reactions of Mid-valent Manganese-Oxygen Complexes
几何和电子结构对中价锰氧配合物断键和成键反应的贡献
  • 批准号:
    1900384
  • 财政年份:
    2019
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant
Development of solid-state actuator using the arsenic bond making and breaking
利用砷键的形成和断裂开发固态致动器
  • 批准号:
    24654106
  • 财政年份:
    2012
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
CAREER: Redox-Active Ligand-Mediated Multielectron Bond-Making and Bond-Breaking Reactions at Later First-Row Transition Metal Centers
职业生涯:氧化还原活性配体介导的多电子成键和断键反应在后来的第一行过渡金属中心
  • 批准号:
    0844693
  • 财政年份:
    2009
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant
Utilization of C-S bond-breaking and bond-making reactions in synthetic organosulfur-molybdenum and tungsten chemistry
C-S断键和成键反应在合成有机硫-钼和钨化学中的应用
  • 批准号:
    4734-1997
  • 财政年份:
    2001
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of C-S bond-breaking and bond-making reactions in synthetic organosulfur-molybdenum and tungsten chemistry
C-S断键和成键反应在合成有机硫-钼和钨化学中的应用
  • 批准号:
    4734-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of C-S bond-breaking and bond-making reactions in synthetic organosulfur-molybdenum and tungsten chemistry
C-S断键和成键反应在合成有机硫-钼和钨化学中的应用
  • 批准号:
    4734-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of C-S bond-breaking and bond-making reactions in synthetic organosulfur-molybdenum and tungsten chemistry
C-S断键和成键反应在合成有机硫-钼和钨化学中的应用
  • 批准号:
    4734-1997
  • 财政年份:
    1998
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of C-S bond-breaking and bond-making reactions in synthetic organosulfur-molybdenum and tungsten chemistry
C-S断键和成键反应在合成有机硫-钼和钨化学中的应用
  • 批准号:
    4734-1997
  • 财政年份:
    1997
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Discovery Grants Program - Individual
Bond Making and Bond Breaking Processes at Transition Metal Centers
过渡金属中心的成键和断键过程
  • 批准号:
    9625367
  • 财政年份:
    1996
  • 资助金额:
    $ 318.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了