Differential Equations and Rough Path Theory

微分方程和粗路径理论

基本信息

  • 批准号:
    EP/E048609/1
  • 负责人:
  • 金额:
    $ 26.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

An ordinary differential equation is often used to model the movement of a particle. Similarly, partial differential equation can be used to described the evolution of an entire distribution of particles. It is natural to add randomness to such models: sometimes because this is a more realistic description which takes into account random noise, sometimes because this randomness is fundamental to the model itself as is the case for the stock market. A good model of random noise, such as the celebrated Brownian motion, cannot evolve smoothly in time (otherwise the noise would be predictable on a small scale!). As a result, stochastic perturbations of differential equation are intrinsically irregular and require fundamentally new methods and theories. The ground-breaking contributions of It, which allowed to make all this possible, is one of the great achievements of 20th century mathematics. With all its benefits It's theory can be fragile and some questions that arise naturally in applications require major effort or cannot be treated at all. In essence, this restrictions come from the fact that stochastic integrals are transforms of fair games (think of Brownian motion as the limit of an unbiased or fair random walk) and the integrand (= the gambling strategy ). Life would be much easier if one could fix a noise-scenario and then apply a standard theory of (non-random) differential equations. It was only realized in 1998 that this is indeed possible and the corresponding theory has been labelled rough path theory . There is a conceptual price to pay: Brownian motion on the familiar Euclidean space has to be replaced by a stochastic process with values in a so-called Lie group. The first part of the proposed research aims to understand to what extent Brownian motion (on the Lie-group) may be replaced by other Gaussian processes and to give a full characterization of such Gaussian rough paths . There is a real chance for a unified theory which brings together many particular cases such as fractional Brownian motion and so-called Volterra processes. Potential applications include models of mathematical Finance. The second part of the research is aimed at partial differential equations with noise. (Such equations arise in many fields of applied science.) A deterministic theory of such equations with noise in the rough sense would provide a robust and constructive approach to stochastic partial differential equations, improving both our understanding of these equations as well as how to treat them numerically.
常微分方程常被用来模拟粒子的运动。类似地,偏微分方程可以用来描述整个粒子分布的演化。在这样的模型中加入随机性是很自然的:有时是因为这是一个考虑了随机噪声的更现实的描述,有时是因为这种随机性是模型本身的基础,就像股票市场一样。一个好的随机噪声模型,如著名的布朗运动,不能在时间上平滑地演化(否则噪声将在小尺度上是可预测的!)。因此,微分方程的随机扰动本质上是不规则的,需要全新的方法和理论。它的开创性贡献使这一切成为可能,是世纪数学的伟大成就之一。尽管它有很多好处,但它的理论可能是脆弱的,在应用中自然出现的一些问题需要付出很大的努力,或者根本无法处理。从本质上讲,这种限制来自于随机积分是公平博弈(将布朗运动视为无偏或公平随机游走的极限)和被积函数(=赌博策略)的变换。如果人们能够解决一个噪声场景,然后应用(非随机)微分方程的标准理论,生活会容易得多。直到1998年才意识到这确实是可能的,相应的理论被称为粗糙路径理论。这是一个概念上的代价:在熟悉的欧几里得空间上的布朗运动必须被一个在所谓的李群中取值的随机过程所取代。建议的研究的第一部分的目的是了解布朗运动(李群)在何种程度上可以被其他高斯过程取代,并给出了这样的高斯粗糙路径的充分表征。有一个真实的机会,一个统一的理论,汇集了许多特殊的情况下,如分数布朗运动和所谓的沃尔泰拉过程。潜在的应用包括数学金融模型。第二部分的研究是针对带噪声的偏微分方程。(Such方程出现在应用科学的许多领域中。一个确定性的理论,这种方程的噪声在粗糙的意义上将提供一个强大的和建设性的方法随机偏微分方程,提高我们对这些方程的理解,以及如何处理它们的数值。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differential equations driven by Gaussian signals
高斯信号驱动的微分方程
Densities for rough differential equations under Hormander's condition
  • DOI:
    10.4007/annals.2010.171.2115
  • 发表时间:
    2007-08
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    T. Cass;P. Friz
  • 通讯作者:
    T. Cass;P. Friz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Friz其他文献

Peter Friz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Studentship
Building a Theory of Regular Structures for Non-Autonomous and Quasi-Linear Rough Evolution Equations, and Applying the Theory to Forest Kinematic Ecosystems
建立非自治和拟线性粗糙演化方程的规则结构理论,并将该理论应用于森林运动生态系统
  • 批准号:
    19K14555
  • 财政年份:
    2019
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
FOR 2402: Rough Paths, Stochastic Partial Differential Equations and Related Topics
FOR 2402:粗糙路径、随机偏微分方程及相关主题
  • 批准号:
    277012070
  • 财政年份:
    2016
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Units
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
  • 批准号:
    EP/J017450/1
  • 财政年份:
    2012
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Grant
Regularity of Weak Solutions to Degenerate Nonlinear/Quasilinear Equations with Rough Coefficients
具有粗糙系数的退化非线性/拟线性方程弱解的正则性
  • 批准号:
    418975-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了