Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
基本信息
- 批准号:EP/J017450/1
- 负责人:
- 金额:$ 45.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims to study elliptic partial differential equations. Partial differential equations are used to mathematically describe behaviour of many real life phenomena and arise practically everywhere, such as in physics, material science, geometry, probability and many other disciplines. In many real life models such as in material science or physics the coefficients can be discontinuous (modelling impurities in the material or cracks) and so it makes sense to study equations withlow regularity coefficients. Here the discontinuity of coefficients is the mathematical expression of the fact that many materials contain impurities (foreign objects) that somewhat change the properties of studied objects. It is therefore very important to consider these situations mathematically and understand way of solving such equations. This is what we are going to do in our research. As the name of this project suggests we are going to focus on three basic types of boundary value problems. Our knowledge about different boundary value problems is quite uneven, in particular one type of boundary value problem is much better explored than the other two. We aim to remedy this situation and bring our knowledge about these boundary value problems to approximately same level.
本研究的目的是研究椭圆型偏微分方程。偏微分方程用于数学描述许多真实的生活现象的行为,并且几乎无处不在,例如在物理学,材料科学,几何学,概率和许多其他学科中。在许多真实的生命模型中,比如在材料科学或物理学中,系数可能是不连续的(模拟材料中的杂质或裂缝),因此研究具有低正则系数的方程是有意义的。在这里,系数的不连续性是这样一个事实的数学表达,即许多材料含有杂质(异物),这些杂质在某种程度上改变了研究对象的属性。因此,从数学上考虑这些情况并理解求解此类方程的方法是非常重要的。这就是我们在研究中要做的。正如这个项目的名字所暗示的,我们将集中讨论三种基本类型的边值问题。我们对不同的边值问题的知识是相当不平衡的,特别是一种类型的边值问题是更好地探讨比其他两个。我们的目标是纠正这种情况,使我们的知识,这些边值问题,以近似相同的水平。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations
广义抛物型 p-拉普拉斯方程有界弱解的霍尔德连续性
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0.7
- 作者:Hwang, S.
- 通讯作者:Hwang, S.
The Dirichlet boundary problem for second order parabolic operators satisfying a Carleson condition
满足卡尔森条件的二阶抛物线算子的狄利克雷边界问题
- DOI:10.4171/rmi/1003
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dindoš M
- 通讯作者:Dindoš M
Boundary Value Problems for Second-Order Elliptic Operators Satisfying a Carleson Condition
满足卡尔森条件的二阶椭圆算子的边值问题
- DOI:10.1002/cpa.21649
- 发表时间:2016
- 期刊:
- 影响因子:3
- 作者:Dindoš M
- 通讯作者:Dindoš M
BMO solvability and the $A_\infty$ condition for second order parabolic operators
二阶抛物线算子的 BMO 可解性和 $A_infty$ 条件
- DOI:10.48550/arxiv.1510.05813
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Dindo
- 通讯作者:Dindo
The Boundary value problems for second order elliptic operators satisfying a Carleson condition
满足Carleson条件的二阶椭圆算子的边值问题
- DOI:10.48550/arxiv.1301.0426
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Dindoš M
- 通讯作者:Dindoš M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Dindos其他文献
Martin Dindos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Dindos', 18)}}的其他基金
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
- 批准号:
EP/Y033078/1 - 财政年份:2024
- 资助金额:
$ 45.13万 - 项目类别:
Research Grant
Maths Research Associates 2021 Edinburgh
数学研究助理 2021 爱丁堡
- 批准号:
EP/W522648/1 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Research Grant
Solving partial differential equations and systems by techniques of harmonic analysis
通过调和分析技术求解偏微分方程和系统
- 批准号:
EP/F014589/1 - 财政年份:2007
- 资助金额:
$ 45.13万 - 项目类别:
Research Grant
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 45.13万 - 项目类别:
Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 45.13万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 45.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 45.13万 - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
$ 45.13万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Standard Grant
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Discovery Grants Program - Individual
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
- 批准号:
2110886 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Discovery Grants Program - Individual
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 45.13万 - 项目类别:
Standard Grant