Inference and Complexity in Composite Connected Systems

复合连接系统中的推理和复杂性

基本信息

  • 批准号:
    EP/E049516/1
  • 负责人:
  • 金额:
    $ 41.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

A lack of principled approaches for dealing with complexity and emergent behaviour on networks of interacting subcomponents has been identified as a key bottleneck area of significant future demand both by UK research councils and the EU.This proposal tackles a particularly demanding area of composite systems: complex systems of interacting subcomponents where there is a combination of local interactions between subcomponents, together with a different scale of longer range interactions.Traditional methods to study complexity are based typically on large scale agent-based simulations or on numerical solutions of coupled non-linear deterministic or stochastic differential equations. However, being of a large scale, highly non-linear and inherently of composite multi-level interactions, these methods are likely to be unsuccessful in providing generic insight as well as robust, principled and reliable solutions for such systems. Due to sensitivity of parameterisation, external observation, and massive scale, reliable direct computational approaches to composite systems' modelling are unfeasible.Instead, we propose a framework based on inherently distributive and approximative probabilistic approaches. The methods we will use to describe uncertainty, information transfer and emergent properties in complex systems are based on complex connected graphs. The techniques for analysing such graphs will derive from extensions of methods in statistical physics to decompose high dimensional joint distributions into simpler, computable quantities. The novelty of the proposal stems from the focus on systems which exhibit this composite character: a combination of localised and long range, sparse and dense, weak and strong interactions between subcomponents in such graphs.We are interested in exploiting complexity in information systems which can be described by such graphs, but we are utilising techniques from physics and modify them to be applicable to inference in, and analysis of, complex systems.This framework will lead to new insights and fundamental tools and techniques on generic systems which will be applicable to many important current real world problems, including: CDMA coding methods, ad-hoc sensor networks, distributive traffic-lights management, embedded intelligent sensors, and cortical functioning.
缺乏处理相互作用子组件网络上的复杂性和紧急行为的原则性方法已被英国研究委员会和欧盟确定为未来重大需求的关键瓶颈领域。这项建议解决了复合系统的一个特别苛刻的领域:相互作用子组件的复杂系统,其中子组件之间存在局部相互作用的组合,以及不同规模的较长范围的相互作用。研究复杂性的传统方法通常基于大规模的基于主体的模拟或耦合的非线性确定性或随机微分方程的数值解。然而,由于这些方法具有大规模、高度非线性和固有的复合多层次相互作用,很可能无法为此类系统提供通用的洞察力以及健壮、原则性和可靠的解决方案。由于参数的敏感性、外部观测性和大规模的复杂性,直接计算方法不能可靠地用于组合系统的建模,因此,我们提出了一个基于内在分布和近似概率方法的框架。我们将用来描述复杂系统中的不确定性、信息传递和紧急特性的方法是基于复杂连通图的。分析这类图表的技术将源于统计物理方法的扩展,即将高维联合分布分解为更简单的、可计算的量。该方案的新颖性来自于对呈现这种复合特征的系统的关注:局部和远程、稀疏和密集、子组件之间的弱和强相互作用的组合。我们对利用信息系统中可以用这种图来描述的复杂性感兴趣,但我们正在利用物理学的技术,并将它们修改为适用于复杂系统的推理和分析。该框架将产生关于一般系统的新的见解和基本工具和技术,这些将适用于当前许多重要的现实世界问题,包括:码分多址编码方法、自组织传感器网络、分布式交通灯管理、嵌入式智能传感器、和大脑皮层功能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equilibrium properties of disordered spin models with two-scale interactions.
具有两尺度相互作用的无序自旋模型的平衡特性。
A preliminary study into emergent behaviours in a lattice of interacting nonlinear resonators and oscillators
对相互作用的非线性谐振器和振荡器晶格中涌现行为的初步研究
Randomness and metastability in CDMA paradigms
CDMA 范式中的随机性和亚稳态
  • DOI:
    10.48550/arxiv.0711.4380
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raymond J
  • 通讯作者:
    Raymond J
Inference by belief propagation in composite systems.
复合系统中的信念传播推理。
Collective Behaviour in a Square Lattice of Driven Duffing Resonators Coupled to van der Pol Oscillators
与范德波尔振荡器耦合的驱动杜芬谐振器方格中的集体行为
  • DOI:
    10.1109/cit.2010.150
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Randrianandrasana M
  • 通讯作者:
    Randrianandrasana M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Saad其他文献

Adaptive TAP Equations
自适应 TAP 方程
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Opper;David Saad
  • 通讯作者:
    David Saad
Optimal Embedding for Watermarking in Discrete Data Spaces
离散数据空间中水印的最佳嵌入
  • DOI:
    10.1007/11558859_7
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bounkong;B. Toch;David Saad
  • 通讯作者:
    David Saad
Structured codebooks for SCS watermarking
用于 SCS 水印的结构化码本
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bounkong;B. Toch;David Saad;David Lowe
  • 通讯作者:
    David Lowe
A mean field theory of coded CDMA systems
编码CDMA系统的平均场理论
Emerging interdependence between stock values during financial crashes
金融危机期间股票价值之间出现的相互依赖关系
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jacopo Rocchi;Enoch Yan Lok Tsui;David Saad
  • 通讯作者:
    David Saad

David Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Saad', 18)}}的其他基金

Compressed sensing for medical applications
医疗应用的压缩传感
  • 批准号:
    EP/W015412/1
  • 财政年份:
    2022
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Research Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.12万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了