Investigation of arrhythmias in anthropomorphized murine cardiac myocytes.

拟人化小鼠心肌细胞心律失常的研究。

基本信息

项目摘要

DESCRIPTION (provided by applicant): This application presents and utilizes a new electrophysiology technique, the anthropomorphizing dynamic clamp (ADC) that increases the utility of genetically engineered mice in studies of inherited cardiac arrhythmias. Inherited channelopathies, such as the Long QT syndrome, are known causes of syncope, cardiac arrest, and sudden cardiac death. In the past decade, great progress has been made in identifying disease-causing mutations in patients. Several mouse models of these mutations have been produced; however, extrapolation of a mouse mutant phenotype to human disease is difficult because of the major differences between mouse and human cardiac electrophysiology dynamics. The technique proposed in this application uses a hybrid computational biology-electrophysiology method in order to examine isolated mouse myocytes in the context of a human action potential waveform. The ADC is a dynamic whole-cell patch clamp technique that couples an isolated murine cardiac myocyte to computational models. These models calculate a compensatory current which will allow a mouse myocyte to undergo a free-running human membrane potential. This will permit investigation of arrhythmogenic events, such as early after depolarizations, which are normally masked in the context of the short mouse action potential. Preliminary modeling studies have demonstrated that the ADC can be used to study the effects of a mutation introduced into a mouse myocyte on the human action potential. The ADC could be applied to a wide-range of mouse models of inherited channelopathies. Also, it is directly relevant to the NHLBI strategic plan, which specifically calls for the development of computational and experimental techniques that can help uncover the pathophysiologic mechanisms of cardiac diseases. Lay Summary: Disturbances in the normal rhythm of the heart (arrhythmias) can lead to serious health consequences, including death. Some people have inherited mutations which increase the likelihood of arrhythmias. Genetically engineered mice have been made in order to study these mutations; however, major differences exist between mouse and human heart rhythms. The new technique proposed in this application will convert the behavior of mouse heart cells to a more human-like state. Studies of mice using this technique should yield new insights into the mechanisms of heart rhythm diseases.
描述(由申请人提供):本申请介绍并利用了一种新的电生理技术,即拟人化动力夹(ADC),它在遗传性心律不齐的研究中增加了基因工程小鼠的效用。遗传通道病(例如长QT综合征)是晕厥,心脏骤停和猝死的已知原因。在过去的十年中,在识别患者引起疾病的突变方面取得了巨大进展。这些突变的几种小鼠模型已经产生。然而,由于小鼠和人类心脏电生理动力学之间的主要差异,因此很难将小鼠突变体表型外推到人类疾病。本应用程序中提出的技术使用了混合计算生物学 - 电子生理学方法,以便在人类动作电位波形的背景下检查孤立的小鼠心肌细胞。 ADC是一种动态的全细胞贴片夹技术,将孤立的鼠心肌细胞与计算模型相结合。这些模型计算一个补偿电流,该电流将使小鼠心肌细胞具有自由运行的人体膜电位。这将允许研究心律失常事件,例如去极化后的早期,通常在小鼠动作电位的背景下掩盖。初步建模研究表明,ADC可用于研究引入小鼠心肌对人类作用潜力的突变的影响。 ADC可以应用于遗传通道病的大量鼠标模型。同样,它与NHLBI战略计划直接相关,该计划特别呼吁开发计算和实验技术,这些技术可以帮助揭示心脏病的病理生理机制。摘要摘要:心脏正常节奏的障碍(心律不齐)会导致严重的健康后果,包括死亡。有些人遗传了突变,这增加了心律不齐的可能性。为了研究这些突变而进行了基因工程小鼠。但是,小鼠和人心节奏之间存在主要差异。本应用中提出的新技术将将小鼠心脏细胞的行为转换为更类似人类的状态。使用该技术的小鼠的研究应产生对心律疾病机制的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Clare Ahrens-Nicklas其他文献

Rebecca Clare Ahrens-Nicklas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Clare Ahrens-Nicklas', 18)}}的其他基金

Network modulation to improve gene therapy in CLN3 disease
网络调节改善 CLN3 疾病的基因治疗
  • 批准号:
    10579621
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
Disease Severity Stratification in Multiple Sulfatase Deficiency
多种硫酸酯酶缺乏症的疾病严重程度分层
  • 批准号:
    10700164
  • 财政年份:
    2022
  • 资助金额:
    $ 3.76万
  • 项目类别:
Disease Severity Stratification in Multiple Sulfatase Deficiency
多种硫酸酯酶缺乏症的疾病严重程度分层
  • 批准号:
    10513906
  • 财政年份:
    2022
  • 资助金额:
    $ 3.76万
  • 项目类别:
Network modulation to improve gene therapy in CLN3 disease
网络调节改善 CLN3 疾病的基因治疗
  • 批准号:
    10626675
  • 财政年份:
    2022
  • 资助金额:
    $ 3.76万
  • 项目类别:
The 2021 Multiple Sulfatase Deficiency Scientific and Family Meeting
2021 年多种硫酸酯酶缺乏症科学和家庭会议
  • 批准号:
    10318766
  • 财政年份:
    2021
  • 资助金额:
    $ 3.76万
  • 项目类别:
Mechanisms of neuronal network dysfunction in juvenile neuronal ceroid lipofuscinosis
幼年神经元蜡质脂褐质沉积症神经元网络功能障碍的机制
  • 批准号:
    9789984
  • 财政年份:
    2018
  • 资助金额:
    $ 3.76万
  • 项目类别:
Mechanisms of neuronal network dysfunction in juvenile neuronal ceroid lipofuscinosis
幼年神经元蜡质脂褐质沉积症神经元网络功能障碍的机制
  • 批准号:
    10004182
  • 财政年份:
    2018
  • 资助金额:
    $ 3.76万
  • 项目类别:
Mechanisms of neuronal network dysfunction in juvenile neuronal ceroid lipofuscinosis
幼年神经元蜡质脂褐质沉积症神经元网络功能障碍的机制
  • 批准号:
    10457437
  • 财政年份:
    2018
  • 资助金额:
    $ 3.76万
  • 项目类别:
Mechanisms of neuronal network dysfunction in juvenile neuronal ceroid lipofuscinosis
幼年神经元蜡质脂褐质沉积症神经元网络功能障碍的机制
  • 批准号:
    10248394
  • 财政年份:
    2018
  • 资助金额:
    $ 3.76万
  • 项目类别:
Investigation of arrhythmias in anthropomorphized murine cardiac myocytes.
拟人化小鼠心肌细胞心律失常的研究。
  • 批准号:
    7690884
  • 财政年份:
    2008
  • 资助金额:
    $ 3.76万
  • 项目类别:

相似国自然基金

TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
  • 批准号:
    82100367
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
  • 批准号:
    28970070
  • 批准年份:
    1989
  • 资助金额:
    2.5 万元
  • 项目类别:
    面上项目

相似海外基金

Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
  • 批准号:
    10583283
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
  • 批准号:
    10586393
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
  • 批准号:
    10677295
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
K+ channel structural dynamics landscape: from selectivity to gating
K 通道结构动力学景观:从选择性到门控
  • 批准号:
    10663554
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
Biogenesis of hERG1a/1b ion channels in health and disease model cardiomyocytes
健康和疾病模型心肌细胞中 hERG1a/1b 离子通道的生物发生
  • 批准号:
    10723869
  • 财政年份:
    2023
  • 资助金额:
    $ 3.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了