WORKSHOP: Stochastic Filtering and Control
研讨会:随机过滤和控制
基本信息
- 批准号:EP/F023049/1
- 负责人:
- 金额:$ 2.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in probability theory, the increase in computing power that made new computational algorithms possible and important modern applications from statistical signal processing, engineering and mathematical finance have renewed interest in the fields of stochastic filtering and stochastic control. During the last few years, there has been important progress in both their theory and practice. In stochastic filtering, the goal is to estimate a random process from partial (possibly noisy) observations. Applications are widespread, such as missile tracking and handwriting recognition. In the last few years, the field has seen dramatic progress, mainly due to the discovery of a new set of powerful algorithms (sequential Monte Carlo methods or Particle Filters). These new algorithms and the discovery of an error in a forty-year-old proof also renewed interest in the old problem of asymptotic stability, i.e. how the quality of the estimation depends on the initialisation of the algorithm.In stochastic control, the goal is to optimally control a process in order to minimize a risk function or, equivalently, to maximise a utility function. Such problems come up in most fields of engineering, from structural to financial engineering. Recently, however, a huge stimulus to the further development in stochastic control was the discovery of new applications to mathematical finance, which was followed by the discovery of many new mathematical tools created to deal with the new application.We aim to bring together leading researchers working on different aspects of these fields / theory, algorithms or applications / and from both fields of stochastic filtering and stochastic control, which are closely related (for example, in control of partially observed processes). We hope that this will give a fuller picture of the progress that has been made and the challenges that still lie ahead. We believe that there is a significant opportunity for cross-fertilization between the different areas.
概率论的进步,使新的计算算法成为可能的计算能力的增加,以及统计信号处理、工程和数学金融等重要的现代应用,重新引起了人们对随机滤波和随机控制领域的兴趣。在过去的几年里,他们的理论和实践都取得了重要的进展。在随机滤波中,目标是从部分(可能有噪声的)观测中估计随机过程。应用广泛,例如导弹跟踪和手写识别。在过去的几年里,该领域取得了巨大的进步,主要是因为发现了一套新的强大的算法(序列蒙特卡罗方法或粒子过滤器)。这些新的算法和一个已有40年历史的证明中错误的发现也重新引起了人们对渐近稳定性这个老问题的兴趣,即估计的质量如何依赖于算法的初始化。在随机控制中,目标是最优地控制过程,以便最小化风险函数或等价地最大化效用函数。从结构工程到金融工程,大多数工程领域都会出现这样的问题。然而,最近,随机控制进一步发展的一个巨大推动力是数学金融的新应用的发现,随之而来的是许多新的数学工具的发现,以处理这些新的应用。我们的目标是聚集在这些领域/理论、算法或应用的不同方面以及来自密切相关的随机过滤和随机控制这两个领域的领先研究人员(例如,在部分观察到的过程的控制中)。我们希望,这将使我们更全面地了解已经取得的进展和今后仍面临的挑战。我们认为,不同地区之间存在着相互受精的重大机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saul Jacka其他文献
Markov chain approximations to scale functions of Lévy processes
- DOI:
10.1016/j.spa.2015.05.012 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Aleksandar Mijatović;Matija Vidmar;Saul Jacka - 通讯作者:
Saul Jacka
Minimising the expected commute time
- DOI:
10.1016/j.spa.2019.04.010 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Saul Jacka;Ma. Elena Hernández-Hernández - 通讯作者:
Ma. Elena Hernández-Hernández
Saul Jacka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saul Jacka', 18)}}的其他基金
Coupling and Control in Continuous Time
连续时间耦合与控制
- 批准号:
EP/P00377X/1 - 财政年份:2016
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2021
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2018
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
RUI: Efficient Adaptive Backward Stochastic Differential Equation Methods for Nonlinear Filtering Problems
RUI:解决非线性滤波问题的高效自适应后向随机微分方程方法
- 批准号:
1720222 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Continuing Grant
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Stochastic Filtering for Spacecraft Formation Flying
航天器编队飞行的非线性随机滤波
- 批准号:
497329-2016 - 财政年份:2016
- 资助金额:
$ 2.03万 - 项目类别:
University Undergraduate Student Research Awards
Stochastic control, stochastic algorithms, and nonlinear filtering
随机控制、随机算法和非线性滤波
- 批准号:
6673-2010 - 财政年份:2016
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2016
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2015
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
LM²MSE State Estimation - Kalman Filtering under Stochastic and Unknown but Bounded Uncertainties
LM²MSE 状态估计 - 随机和未知但有界不确定性下的卡尔曼滤波
- 批准号:
255944627 - 财政年份:2014
- 资助金额:
$ 2.03万 - 项目类别:
Research Grants
Stochastic control, stochastic algorithms, and nonlinear filtering
随机控制、随机算法和非线性滤波
- 批准号:
6673-2010 - 财政年份:2013
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual