LM²MSE State Estimation - Kalman Filtering under Stochastic and Unknown but Bounded Uncertainties
LM²MSE 状态估计 - 随机和未知但有界不确定性下的卡尔曼滤波
基本信息
- 批准号:255944627
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many research directions and applications share the common objective of computing an estimate for the unknown state of a dynamic system. The Kalman filter has evolved to a well-established concept for estimating the system's state on the basis of noisy measurements. However, a major limitation in applying the Kalman filter is less the assumption of Gaussian distributions that characterize the involved uncertainties but more generally the use of a purely probabilistic model. This model can be too specific and too restrictive when different types of uncertainties have to be dealt with. Important examples include uncertainties originating from unknown systematic errors, quantization and linearization errors, or disturbances related to an unreliable communication network. The Kalman filter and the majority of well-known estimation techniques require a purely probabilistic modeling of uncertainties and thus can render the solving of many estimation problems more difficult. In the course of preliminary work, the Kalman filter algorithm has been extended in order to complement the common stochastic uncertainty characterization by a non-stochastic model that relies on set-membership uncertainty descriptions. This uncertainty model is particularly tailored to unknown but bounded disturbances. Unlike random errors, which are characterized by probability distributions, a set-membership model does not require any specific error behavior to be pinpointed - except for boundedness. This combined approach, which is referred to as LM²MSE estimator (LM²MSE: Linear Min-Max Mean Squared Error) in this proposal, enables a simultaneous treatment of stochastic as well as unknown but bounded uncertainties and remains simple to implement.This research project primarily aims at extending the common purely stochastic approach to state estimation by a set-membership uncertainty model. The further analysis and development of the LM²MSE concept is subdivided into three aspects to be addressed. In line with the first aspect, important properties of the LM²MSE filter are to be pointed out. These include, in particular, convergence properties and an assessment of its estimation quality. This aspect also covers important questions concerning the filter's application to control problems. A comparison with other approaches that allow for a simultaneous treatment of different types of uncertainties lies in the focus of the second aspect. The third aspect is dedicated to important further developments in order to tackle continuous-time as well as nonlinear state estimation problems and to allow for distributed computations of state estimates. The results of this research project are expected to spur a new perspective on the treatment of measurement uncertainties and to provide simpler solutions to many estimation and control problems. Accompanying application and case studies highlight the benefits of this new concept.
许多研究方向和应用都有一个共同的目标,那就是计算动态系统未知状态的估计。卡尔曼滤波已经发展成为一个基于噪声测量来估计系统状态的成熟概念。然而,应用卡尔曼滤波的一个主要限制不是假设表征相关不确定性的高斯分布,而是更普遍地使用纯粹的概率模型。当必须处理不同类型的不确定性时,这个模型可能过于具体和过于严格。重要的例子包括由未知的系统误差、量化和线性化误差或与不可靠的通信网络有关的干扰引起的不确定性。卡尔曼滤波和大多数众所周知的估计技术需要对不确定性进行纯粹的概率建模,因此会使许多估计问题的解决变得更加困难。在前期工作中,对卡尔曼滤波算法进行了扩展,以补充依赖于集员不确定性描述的非随机模型对常见随机不确定性的描述。这种不确定性模型特别适用于未知但有界的干扰。与以概率分布为特征的随机错误不同,集员模型不需要精确定位任何特定的错误行为--除了有界性。这种组合方法,在本方案中被称为LMMSE估计器(LMMSE:线性最小-最大均方误差),能够同时处理随机和未知但有界的不确定性,并且仍然易于实现。本研究项目的主要目的是通过集员不确定性模型将常见的纯随机方法扩展到状态估计。对LMMSE概念的进一步分析和发展分为三个方面需要解决。与第一个方面一致的是,需要指出的是LMMSE滤波器的重要特性。这些特别包括收敛性质和对其估计质量的评估。这一方面还包括有关过滤器在控制问题中的应用的重要问题。与能够同时处理不同类型不确定性的其他方法的比较在于第二个方面的重点。第三个方面致力于重要的进一步发展,以解决连续时间和非线性状态估计问题,并允许分布式计算状态估计。这一研究项目的结果有望为处理测量不确定度提供一个新的视角,并为许多估计和控制问题提供更简单的解决方案。伴随而来的应用和案例研究突出了这一新概念的好处。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
State estimation for ellipsoidally constrained dynamic systems with set-membership pseudo measurements
- DOI:10.1109/mfi.2015.7295824
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:B. Noack;M. Baum;U. Hanebeck
- 通讯作者:B. Noack;M. Baum;U. Hanebeck
Event-based estimation in a feedback loop anticipating on imperfect communication
- DOI:10.1016/j.ifacol.2017.08.104
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:J. Sijs;B. Noack
- 通讯作者:J. Sijs;B. Noack
Decentralized data fusion with inverse covariance intersection
- DOI:10.1016/j.automatica.2017.01.019
- 发表时间:2017-05-01
- 期刊:
- 影响因子:6.4
- 作者:Noack, Benjamin;Sijs, Joris;Hanebeck, Uwe D.
- 通讯作者:Hanebeck, Uwe D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Benjamin Noack其他文献
Professor Dr.-Ing. Benjamin Noack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Benjamin Noack', 18)}}的其他基金
相似国自然基金
数字化三维测量系统对腭中缝骨皮质切开辅助上颌 MSE 扩
弓技术疗效评价的对比研究
- 批准号:2024JJ9541
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
准一维链状化合物(MSe4)2I(M=Ta、Nb)高压物性研究
- 批准号:12004004
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
VII型分泌系统LXG及MSE效应子促进猪链球菌竞争定殖及逃避宿主免疫清除的分子机制
- 批准号:31972650
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
基于多元功能影像数据MSE复杂度分析的“阳陵泉-胆腑-脑”相关性及机制
- 批准号:81904096
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于UPLC-Q-TOF-MSE 指导Dereplication 靶向分离天名精抗肝癌的新倍半萜内酯成分
- 批准号:2019JJ50351
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
MsE58基因调控紫花苜蓿配子体发育分子机理的研究
- 批准号:31072072
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Motional Stark effect (MSE) measurements of microwave-driven current profile on MAST-Upgrade
MAST-Upgrade 上微波驱动电流分布的动斯塔克效应 (MSE) 测量
- 批准号:
2888730 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Load and resistance factor calibration of MSE walls
MSE 墙的负载和阻力系数校准
- 批准号:
481173-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Engineering Design for Pre-Cast Concrete MSE Wall Panels
预制混凝土 MSE 墙板的工程设计
- 批准号:
466068-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
The Multi Sensory Environment (MSE) in dementia care: the role of design
多感官环境 (MSE) 在痴呆症护理中的作用:设计的作用
- 批准号:
AH/K003135/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Establishment of MSE method enabled to evaluate surface strength on nano scale in the direction of depth from the surface for every thin films
建立MSE方法,可以在距表面深度方向上评估每个薄膜的纳米级表面强度
- 批准号:
24246031 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Working Stress Behavior of Tall Steel Mechanically Stabilized Earth (MSE) Walls
高钢机械稳定土 (MSE) 墙的工作应力行为
- 批准号:
1100903 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Entwicklung eines Instruments zur Identifikation und Beschreibung von Zielgruppen für Doktorandenworkshops - Implikationen für die inhaltliche Gestaltung am Beispiel der MSE-Tagung 2008
开发用于识别和描述博士研讨会目标群体的工具 - 以 2008 年 MSE 会议为例对内容设计的影响
- 批准号:
85562790 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Developments of a micro slurry-jet erosion(MSE)tester and method for globally standardized evaluation of surface strength of thin coatings
微浆料喷射侵蚀(MSE)测试仪和全球标准化薄涂层表面强度评估方法的开发
- 批准号:
18360076 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improved detectability of the CLOVAR radar to permit MSE studies at London, Ontario
改进了 CLOVAR 雷达的可探测性,以便在安大略省伦敦进行 MSE 研究
- 批准号:
240418-2001 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)














{{item.name}}会员




