WORKSHOP: The Algebraic Structure of Profinite Groups; Visitor: Dr. A. Jaikin-Zaprain

研讨会:有限群的代数结构;

基本信息

  • 批准号:
    EP/F056125/1
  • 负责人:
  • 金额:
    $ 1.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is twofold. Firstly, we want to organize a two-day workshop on ``The Algebraic Structure of Profinite Groups'' at Royal Holloway, University of London, in April 2008. Secondly, we want to support -- in connection with the workshop -- a two-week research visit of Prof. Andrei Jaikin-Zapirain (Madrid), one of our key speakers.The symmetries of a mathematical object, like a square or a cube, form an algebraic structure which is called a group. Asymptotic group theory is concerned with the properties of certain sequences of groups. The groups involved each have finite size but their sizes become larger and larger as one progresses along the sequence. A profinite group is a way to capture such a sequence in a single object. This allows one to study the asymptotic behaviour of the groups which make up the sequence by studying one object. The study of profinite groups constitutes a very active research area in mathematics. One of the big problems in that area was suggested by the famous mathematician Jean-Pierre Serre in the 1960s. This problem was unsolved for nearly 40 years. Only recently it has being resolved brilliantly by Dr. Nikolay Nikolov (Imperial) and Prof. Dan Segal (Oxford). We propose a workshop that will investigate possible further research related to Serre's problem and its solution.The speakers in this conference will include Dr. Nikolov and Prof. Segal as well as Prof. Jaikin-Zapirain. He is one of the internationally leading researchers in this particular mathematical area. Both investigators, Dr. Barnea and Dr. Klopsch, previously collaborated with Prof. Jaikin-Zapirain. His visit will enable the three researchers to initiate new joint research projects. In order to achieve that we propose to seize the opportunity and extend Prof. Jaikin-Zapirain's visit to two weeks.
该提案的目的是双重的。首先,我们希望于 2008 年 4 月在伦敦大学皇家霍洛威学院举办为期两天的“有限群代数结构”研讨会。其次,我们希望支持我们的主要发言人之一 Andrei Jaikin-Zapirain 教授(马德里)对研讨会进行为期两周的研究访问。数学对象的对称性,例如正方形或正方形 立方体,形成称为群的代数结构。渐近群论涉及某些群序列的性质。每个涉及的组的大小都是有限的,但随着顺序的进展,它们的大小会变得越来越大。有限群是一种在单个对象中捕获此类序列的方法。这使得人们可以通过研究一个对象来研究构成序列的群体的渐近行为。有限群的研究构成了数学中非常活跃的研究领域。该领域的重大问题之一是由著名数学家 Jean-Pierre Serre 在 20 世纪 60 年代提出的。这个问题近40年来一直没有得到解决。直到最近,Nikolay Nikolov 博士(帝国理工学院)和 Dan Segal 教授(牛津大学)才出色地解决了这个问题。我们提议举办一个研讨会,调查与塞尔问题及其解决方案相关的可能的进一步研究。本次会议的演讲者包括 Nikolov 博士和 Segal 教授以及 Jaikin-Zapirain 教授。他是这一特定数学领域的国际领先研究人员之一。 Barnea 博士和 Klopsch 博士这两位研究人员此前都曾与 Jaikin-Zapirain 教授合作过。他的访问将使三位研究人员能够启动新的联合研究项目。为了实现这一目标,我们建议抓住这次机会,将Jaikin-Zapirain教授的访问期限延长至两周。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiftach Barnea其他文献

Maximal Graded Subalgebras of Loop Toroidal Lie Algebras
  • DOI:
    10.1007/s10468-005-3597-0
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Yiftach Barnea
  • 通讯作者:
    Yiftach Barnea

Yiftach Barnea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic Framework of Compositional Functions for New Structure, Training, and Explainability of Deep Learning
合作研究:深度学习新结构、训练和可解释性的组合函数代数框架
  • 批准号:
    2134235
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic Framework of Compositional Functions for New Structure, Training, and Explainability of Deep Learning
合作研究:深度学习新结构、训练和可解释性的组合函数代数框架
  • 批准号:
    2134237
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Algebraic Framework of Compositional Functions for New Structure, Training and Explainability of Deep Learning
用于深度学习新结构、训练和可解释性的组合函数代数框架
  • 批准号:
    2202668
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Interagency Agreement
Understanding Laughter Experience through algebraic structure of Manzai
通过万岁的代数结构理解笑声体验
  • 批准号:
    22K12231
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic structure of linear causal models
线性因果模型的代数结构
  • 批准号:
    574360-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    University Undergraduate Student Research Awards
ALGEBRAIC STRUCTURE OF MANIN SCHECHTMAN HIGHER BRAID GROUPS AND STRATIFICATIONS OF DISCRIMINANTAL ARRANGEMENTS
马宁谢赫曼高级辫群的代数结构和判别排列的分层
  • 批准号:
    21K03193
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic structure of Tate cohomology
Tate 上同调的代数结构
  • 批准号:
    2610220
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Studentship
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了