Manufacturable nanoscale architectures for heterojunction solar cells

可制造的异质结太阳能电池纳米级结构

基本信息

  • 批准号:
    EP/F056702/1
  • 负责人:
  • 金额:
    $ 168.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will produce manufacturable nanoscale architectures for heterojunction solar cells. Though routed strongly within 'science', the objectives are to achieve engineering solutions to allow the breakthrough needed in this field (target efficiency 10%). Excitonic solar cells based on molecular semiconductors require the presence of a heterojunction between electron and hole-accepting semiconductors in order to separate charges from photogenerated excitons. Large heterojunction interfacial areas are required if all photogenerated excitons are to reach the heterojunction before decaying, and this requires a complex nanoscale architecture. Current methods to achieve this nanostructure and limited and solar cell performance of such devices has stalled. We propose therefore to develop generic routes to separate the control of the nanoscale morphology from the selection of the donor and acceptor semiconductors. This will represent a critical advance in allowing a stable process window, and should allow improved photovoltaic performance through better morphology control and the ability to use semiconductors better matched to the solar spectrum. These routes will be compatible with low temperature processing (this is critical for low-cost manufacturing). The general principle we will use is to separate the processes needed to form the desired nanoscale architecture from the subsequent formation of the active semiconductor-semiconductor heterojunctions at which charge separation is achieved.Central to our approach is the use of 'sacrificial' polymer structures that provide excellent control of nanoscale morphology, and their later replacement with active semiconductors. We will use the controlled nanoscale structures produced using di-block copolymers
该项目将为异质结太阳能电池生产可制造的纳米级架构。虽然在“科学”中有很强的路线,但目标是实现工程解决方案,以实现该领域所需的突破(目标效率10%)。基于分子半导体的激子太阳能电池需要在电子和空穴接受半导体之间存在异质结,以便将电荷与光生激子分离。如果所有光生激子在衰减之前到达异质结,则需要大的异质结界面面积,并且这需要复杂的纳米级结构。目前实现这种纳米结构和有限的太阳能电池性能的方法已经停滞。因此,我们建议开发通用的路线,以分离的供体和受体半导体的选择的纳米级形态的控制。这将代表允许稳定工艺窗口的关键进步,并且应该通过更好的形态控制和使用与太阳光谱更好匹配的半导体的能力来改善光伏性能。这些路线将与低温处理兼容(这对低成本制造至关重要)。我们将使用的一般原则是分离的过程中需要形成所需的纳米级架构,从随后形成的有源半导体异质结,在其中实现电荷分离。我们的方法的核心是使用“牺牲”聚合物结构,提供了良好的控制纳米级形态,和他们后来的有源半导体替代。我们将使用由二嵌段共聚物制成的可控纳米级结构

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3-Hexylthiophene)-Based Solid-State Dye-Sensitized Solar Cells
  • DOI:
    10.1002/adfm.201100048
  • 发表时间:
    2011-07-08
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Abrusci, Agnese;Kumar, R. Sai Santosh;Snaith, Henry J.
  • 通讯作者:
    Snaith, Henry J.
Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells
  • DOI:
    10.1039/c1ee01135a
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Abrusci, Agnese;Ding, I-Kang;Snaith, Henry J.
  • 通讯作者:
    Snaith, Henry J.
Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymer
通过在聚(芴-噻吩基-苯并噻二唑)聚合物中引入额外的噻吩单元来增强电荷传输
  • DOI:
    10.1016/j.orgel.2010.12.009
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Chen Z
  • 通讯作者:
    Chen Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Friend其他文献

算数科教育学研究会(編), 『新版 算数科教育研究』見積りと概数・概算
数学教育研究小组(编辑),“新版数学教育研究”估计和近似数字/近似估计
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Oki;Soh Kushida;Annabel Mikosch;Kota Hatanaka;Youhei Takeda;Satoshi Minakata;Junpei Kuwabara;Takaki Kanbara;Thang Dao;Satoshi Ishii;Tadaaki Nagao;Alexander Kuhne;Felix Deschler;Richard Friend;Yohei Yamamoto;牧野智彦
  • 通讯作者:
    牧野智彦
Exploring the association between mental health and extreme weather events related to climate change: a scoping review
探索心理健康与气候变化相关极端天气事件之间的关联:一项范围综述
  • DOI:
    10.1016/s0140-6736(24)02062-2
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    88.500
  • 作者:
    Masuma Pervin Mishu;MM Golam Rabbani;Silke Vereeken;Jackie Martin-Kerry;Tahzir Faiaz Chowdhury;Abrar Wahab;Saidur Rahman Mashreky;Rumana Huque;Richard Friend
  • 通讯作者:
    Richard Friend
Characterizing the Influence of Relative Humidity and Ethanol Content on the Dynamic Size Distributions of Aerosols Generated from a Soft Mist Inhaler
  • DOI:
    10.1007/s11095-025-03851-1
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Yiliang Lance Jiang;Jose R. Ruiz;Richard Friend;Jonathan P. Reid
  • 通讯作者:
    Jonathan P. Reid
Inclusion of chalcogens raises electron mobility
包含硫族元素可提高电子迁移率
  • DOI:
    10.1038/329014a0
  • 发表时间:
    1987-09-03
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Richard Friend
  • 通讯作者:
    Richard Friend
Bringing molecules to order
使分子有序化
  • DOI:
    10.1038/352377a0
  • 发表时间:
    1991-08-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Richard Friend
  • 通讯作者:
    Richard Friend

Richard Friend的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Friend', 18)}}的其他基金

ECCS-EPSRC Superlattice Architectures for Efficient and Stable Perovskite LEDs
用于高效稳定钙钛矿 LED 的 ECCS-EPSRC 超晶格架构
  • 批准号:
    EP/V06164X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Cambridge-AMOLF Collaboration on Photonic and Optoelectronic Control of Thin-Film LEDs and Solar Cells
剑桥-AMOLF 在薄膜 LED 和太阳能电池的光子和光电控制方面的合作
  • 批准号:
    EP/S030638/1
  • 财政年份:
    2019
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Unravelling ultrafast charge recombination and transport dynamics in hybrid perovskites.
揭示杂化钙钛矿中的超快电荷复合和传输动力学。
  • 批准号:
    EP/R044481/1
  • 财政年份:
    2018
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Sir Henry Royce Institute - Cambridge Equipment
亨利·莱斯爵士研究所 - 剑桥设备
  • 批准号:
    EP/P024947/1
  • 财政年份:
    2016
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures
有机和混合有机/无机半导体结构中电子激发的自旋和相干性控制
  • 批准号:
    EP/M005143/1
  • 财政年份:
    2015
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Optoelectronic Nanostructures via Polythiophene Block Copolymer Self-Assembly
通过聚噻吩嵌段共聚物自组装的光电纳米结构
  • 批准号:
    EP/K016520/1
  • 财政年份:
    2013
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
GLOBAL - Advanced Materials for Energy and Sustainable Manufacturing
全球 - 用于能源和可持续制造的先进材料
  • 批准号:
    EP/K004042/1
  • 财政年份:
    2012
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Heterointerface control of organic semiconductor devices
有机半导体器件的异质界面控制
  • 批准号:
    EP/G060738/1
  • 财政年份:
    2009
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
SEmicoNducting SupramOlecular nanoscale wiRes and Field-Effect TransistorS (SENSORS)
半导体超分子纳米级电线和场效应晶体管(传感器)
  • 批准号:
    EP/H006877/1
  • 财政年份:
    2009
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
SONSEUROCORES-Supramolecular Materials for new functional structures - SUPRAMATES
SONSEUROCORES-用于新型功能结构的超分子材料 - SUPRAMATES
  • 批准号:
    EP/E037526/1
  • 财政年份:
    2007
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant

相似海外基金

Highly Tunable Brush-Like Polymer Architectures to Control Therapeutic Delivery and Cell-Material Interactions
高度可调的刷状聚合物架构,用于控制治疗传递和细胞材料相互作用
  • 批准号:
    10669252
  • 财政年份:
    2022
  • 资助金额:
    $ 168.32万
  • 项目类别:
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709601
  • 财政年份:
    2017
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709275
  • 财政年份:
    2017
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1708189
  • 财政年份:
    2017
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Standard Grant
REU Site: Chemistry of Nanoscale Architectures for Imaging and Environmental Applications at Jackson State University Serving Minority and Disadvantaged Students
REU 网站:杰克逊州立大学用于成像和环境应用的纳米结构化学,为少数族裔和弱势学生提供服务
  • 批准号:
    1461143
  • 财政年份:
    2015
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Standard Grant
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L020696/1
  • 财政年份:
    2014
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Toward innovative, robust, energy-efficient and probabilistic circuit and system architectures based on nanoscale devices
迈向基于纳米级器件的创新、稳健、节能和概率电路和系统架构
  • 批准号:
    386722-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Discovery Grants Program - Individual
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L019876/1
  • 财政年份:
    2014
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Research Grant
Toward innovative, robust, energy-efficient and probabilistic circuit and system architectures based on nanoscale devices
迈向基于纳米级器件的创新、稳健、节能和概率电路和系统架构
  • 批准号:
    386722-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Discovery Grants Program - Individual
Toward innovative, robust, energy-efficient and probabilistic circuit and system architectures based on nanoscale devices
迈向基于纳米级器件的创新、稳健、节能和概率电路和系统架构
  • 批准号:
    386722-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 168.32万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了