Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
基本信息
- 批准号:EP/L019876/1
- 负责人:
- 金额:$ 58.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information technology (IT) has penetrated all aspects of life in modern society. At the heart of IT are miniature devices that can process and store information in one or another form. Currently, the information is processed mainly within semiconductor based data architectures based on tiny "transistors". In contrast, long-term data storage is dominated by magnetic hard disk drives, within which the information is stored as direction of tiny "magnetic needles" the two opposite orientations of which represent "0" and "1" values in binary logics. However, the semiconductor industry is predicted to reach the limit of miniaturisation within the coming decade, while the energy consumption becomes increasingly important both for environmental concerns and to align with use in portable battery fed devices. In this project, we aim to demonstrate a key component of a novel device for information technology, which has the potential to lead to combined data processing and storage on the same chip. This device will be based upon 'magnonics', in which wave-like perturbations of magnetisation ('spin waves') travel through and interact in patterned magnetic tracks ('waveguides') to perform operations. We propose to construct a spin wave source such that the wave properties of many such sources are linked; technically, this is known as 'coherence'. Our proposed spin wave source consists of a magnetic nanowire antenna placed across the waveguides. Microwave radiation will create magnetic oscillations in the antennae, which in turn will induce the spin waves in the nearby waveguides.Spin waves are proposed as logic signal carriers, thereby assisting their seamless integration with existing and future magnetic data storage technologies. This integration of signal processing and storage within a single architecture promises reduced energy consumption and fast device operation. In addition, we will exploit how the spin waves interact with the magnetic configuration of the various components. The materials and geometry of the antennae and waveguides causes the magnetisation to prefer to lie along their length. However, opposite magnetisations can be engineered to meet within, say, the waveguide to create a transition region called a 'magnetic domain wall'. By selectively configuring the orientation of the magnetic waveguide and antennae, including incorporation of magnetic domain walls, we will be able to program the magnonic device functionalities. The magnetic materials we propose to use don't require power to retain their magnetisation (non-volatility), meaning our devices will store the configuration when powered off and, therefore, will be instantaneously bootable upon switch on. The multiple stable configurations of the magnetic components and associated multiple functionalities will also provide an opportunity for creating more complex devices that could replace several semiconductor transistors in conventional electronics. Apart from consumer electronics, the devices will be advantageous for use in aerospace, space and sub-marine technologies in which their non-volatility and resistance to radiation will allow vital weight and cost savings to be made. The collaborative research programme will be conducted jointly by the Department of Materials Science and Engineering at the University of Sheffield and the College of Engineering, Mathematics and Physical Sciences at the University of Exeter. The Sheffield team will contribute to the project their internationally leading expertise in nanotechnology and manipulation of magnetic domain walls, while the Exeter team will contribute their world leading expertise in dynamical characterization and theoretical modelling of magnonic devices. By joining their forces together, the two teams will ensure that UK will remain at the forefront at the magnetic logic technology, in particular opening the new interdisciplinary field of domain wall magnonics.
信息技术已经渗透到现代社会生活的方方面面。IT的核心是微型设备,可以以一种或另一种形式处理和存储信息。目前,信息主要在基于微型“晶体管”的半导体数据架构内处理。相比之下,长期数据存储由磁性硬盘驱动器主导,其中信息存储为微小的“磁针”方向,其两个相反的方向代表二进制逻辑中的“0”和“1”值。然而,预计半导体行业将在未来十年内达到半导体化的极限,而能源消耗对于环境问题和便携式电池供电设备的使用变得越来越重要。在这个项目中,我们的目标是展示一种新的信息技术设备的关键组件,它有可能导致在同一芯片上组合数据处理和存储。这种设备将基于“磁效应”,其中磁化的波状扰动(“自旋波”)穿过图案化的磁道(“波导”)并在图案化的磁道中相互作用以执行操作。我们建议构造一个自旋波源,使许多这样的源的波的属性是链接的;技术上,这被称为“相干性”。我们提出的自旋波源包括一个磁性纳米线天线放置在整个波导。微波辐射将在天线中产生磁振荡,从而在附近的波导中感应出自旋波。自旋波被提议作为逻辑信号载体,从而有助于其与现有和未来的磁性数据存储技术的无缝集成。这种在单一架构中集成信号处理和存储的方式,有望降低能耗并实现快速器件操作。此外,我们将探索自旋波如何与各种组件的磁配置相互作用。天线和波导的材料和几何形状使磁化倾向于沿着它们的长度。然而,相反的磁化可以被设计为在波导内相遇,以创建称为“磁畴壁”的过渡区域。通过选择性地配置磁波导和天线的取向,包括结合磁畴壁,我们将能够对磁振子装置功能进行编程。我们建议使用的磁性材料不需要电力来保持其磁化强度(非易失性),这意味着我们的设备将在断电时存储配置,因此,磁性部件的多种稳定配置和相关联的多种功能也将提供创造更复杂的设备的机会,这些设备可以在开关打开时替换几个半导体晶体管。传统电子学。除了消费电子产品外,这些器件还将有利于航空航天、太空和潜艇技术的使用,在这些技术中,它们的非挥发性和抗辐射性将使重量和成本得以节省。该合作研究计划将由谢菲尔德大学材料科学与工程系和埃克塞特大学工程、数学和物理科学学院联合开展。谢菲尔德团队将为该项目贡献他们在纳米技术和磁畴壁操纵方面的国际领先专业知识,而埃克塞特团队将贡献他们在磁振子器件的动态特性和理论建模方面的世界领先专业知识。通过联合他们的力量在一起,两个团队将确保英国将保持在磁逻辑技术的最前沿,特别是打开新的跨学科领域的畴壁磁振子。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Field-Controlled Phase-Rectified Magnonic Multiplexer
- DOI:10.1109/tmag.2015.2447010
- 发表时间:2015-11-01
- 期刊:
- 影响因子:2.1
- 作者:Davies, C. S.;Sadovnikov, A. V.;Kruglyak, V. V.
- 通讯作者:Kruglyak, V. V.
Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots
- DOI:10.1063/1.4933263
- 发表时间:2015-10-19
- 期刊:
- 影响因子:4
- 作者:Davies, C. S.;Sadovnikov, A. V.;Kruglyak, V. V.
- 通讯作者:Kruglyak, V. V.
Advances in Magnetics Roadmap on Spin-Wave Computing
- DOI:10.1109/tmag.2022.3149664
- 发表时间:2022-06-01
- 期刊:
- 影响因子:2.1
- 作者:Chumak, A. V.;Kabos, P.;Zhang, X.
- 通讯作者:Zhang, X.
Generation of Propagating Spin Waves From Edges of Magnetic Nanostructures Pumped by Uniform Microwave Magnetic Field
- DOI:10.1109/tmag.2016.2517000
- 发表时间:2016-07-01
- 期刊:
- 影响因子:2.1
- 作者:Davies, C. S.;Kruglyak, V. V.
- 通讯作者:Kruglyak, V. V.
Resonant scattering of surface acoustic waves by arrays of magnetic stripes
磁条阵列对表面声波的共振散射
- DOI:10.1063/5.0170498
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Au Y
- 通讯作者:Au Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volodymyr Kruglyak其他文献
Volodymyr Kruglyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volodymyr Kruglyak', 18)}}的其他基金
Controlling Acoustic Metamaterials with Magnetic Resonances: The Best of Both Worlds
用磁共振控制声学超材料:两全其美
- 批准号:
EP/T016574/1 - 财政年份:2020
- 资助金额:
$ 58.54万 - 项目类别:
Research Grant
SUB-PICOSECOND CONTROL OF NANO-MAGNETS
纳米磁体的亚皮秒控制
- 批准号:
EP/E055087/1 - 财政年份:2008
- 资助金额:
$ 58.54万 - 项目类别:
Fellowship
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
血红素模型体系多自旋态可变电荷力场开发
- 批准号:21873034
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Spin waves in ferromagnetic metallic wires
铁磁金属线中的自旋波
- 批准号:
RGPIN-2020-06606 - 财政年份:2022
- 资助金额:
$ 58.54万 - 项目类别:
Discovery Grants Program - Individual
Emergent and topological properties of 3D chiral gyroid nanostructures
3D 手性螺旋纳米结构的涌现和拓扑特性
- 批准号:
21K04816 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing EPR tools for preclinical interrogation of redox regulation mechanisms contributing to acute lung injury
开发 EPR 工具,用于临床前询问导致急性肺损伤的氧化还原调节机制
- 批准号:
10214392 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Long-range guided surface waves with transverse spin and subwavelength confinement for optical switching and sensing
具有横向自旋和亚波长限制的长程引导表面波,用于光学开关和传感
- 批准号:
21H01383 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing EPR tools for preclinical interrogation of redox regulation mechanisms contributing to acute lung injury
开发 EPR 工具,用于临床前询问导致急性肺损伤的氧化还原调节机制
- 批准号:
10396627 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Spin waves to the rescue. Development of a spintronic reservoir computing platform (GRA0326)
旋转波浪来救援。
- 批准号:
EP/V027808/1 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Research Grant
Spin waves to the rescue: Development of a spintronic reservoir computing platform
自旋波来救援:自旋电子储层计算平台的开发
- 批准号:
EP/V028049/1 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Research Grant
Spin waves in ferromagnetic metallic wires
铁磁金属线中的自旋波
- 批准号:
RGPIN-2020-06606 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Discovery Grants Program - Individual
Time-resolved electron spin resonance spectroscopy of integer-spin reaction intermediates using terahertz waves
使用太赫兹波的整数自旋反应中间体的时间分辨电子自旋共振光谱
- 批准号:
21H01040 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of novel information processing and transmission using electron spin waves
利用电子自旋波实现新颖的信息处理和传输
- 批准号:
21H04647 - 财政年份:2021
- 资助金额:
$ 58.54万 - 项目类别:
Grant-in-Aid for Scientific Research (A)