Computational and Statistical Studies for Multiple Molecular Networks
多分子网络的计算和统计研究
基本信息
- 批准号:7532746
- 负责人:
- 金额:$ 16.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsAnimal ModelBiologicalBiologyBiomedical ResearchBiotechnologyCharacteristicsClassificationCollectionComputational algorithmComputing MethodologiesDataData SetDependenceDependencyDevelopmentDiseaseGene ExpressionGenesGeneticGraphInternetKnowledgeLaboratoriesLinkMethodsMiningMolecularNumbersPathway AnalysisPathway interactionsPatternPharmaceutical PreparationsProcessProteinsPublic HealthRangeResearchResearch PersonnelScoreSoftware ToolsSource CodeStatistical MethodsStatistical StudyStatistically SignificantStructureTestingYeastsage relatedbasecomputerized toolsdesigngene functionhigh throughput technologynetwork modelsnovelopen sourcepractical applicationprogramssimulationsizesoftware developmenttheoriestool
项目摘要
DESCRIPTION (provided by applicant): High-throughput biotechnologies have generated a large number and variety of molecular networks, including protein interaction networks, gene coexpression networks, and regulatory networks. Network biology is an emerging field aiming to understand basic biological mechanisms and disease processes by using molecular networks. Therefore, computational and statistical tools are urgently needed to mine biological knowledge from multiple networks. However, few such computational algorithms are available, and almost no statistical methods have been developed for multiple network analysis. The investigators hypothesize 1) that efficient score functions for gene subnetworks can be defined so that high score correlates with biological significance, 2) that the statistical significance of biological networks are mathematically tractable, and 3) that efficient computational tools can be developed to find statistically significant patterns in biological networks. The objective of this application is to address these questions. In addition, the researchers will develop the software necessary to implement these programs. As a practical application, and to gain an understanding of molecular networks involved in aging, these algorithms will be implemented to analyze a large collection of aging-related gene expression datasets. The investigators will achieve all of these objectives through the following specific aims: 1) define novel scoring functions for network modules, taking both node degrees (the number of links of a node) and edge transitivity (the dependency between links forming triangles) into consideration; and develop efficient computational algorithms to identify molecular modules with high scores; 2) develop a rigorous theory to evaluate the statistical significance of the identified molecular modules; and 3) apply the fully developed tools to analyze a large collection of aging-related datasets and experimentally test a subset of the predictions in yeast. The large number of networks, their size, and their complexity, together make this an especially challenging project. The results from this research can be extremely useful for large scale network analysis, and therefore for the systematic understanding of biology. PUBLIC HEALTH RELEVANCE: Identifying genetic subnetworks related to diseases or drug treatments is an important challenging problem in biomedical research. The statistical and computational tools developed in this application for the analysis of multiple networks will be essential for the effort. The tools will be used to identify genetic networks specific to aging.
描述(申请人提供):高通量生物技术已经产生了大量和多样化的分子网络,包括蛋白质相互作用网络、基因共表达网络和调控网络。网络生物学是一个新兴的领域,旨在通过分子网络来了解基本的生物学机制和疾病过程。因此,迫切需要计算和统计工具来从多个网络中挖掘生物学知识。然而,很少有这样的计算算法可用,而且几乎没有开发出用于多网络分析的统计方法。研究人员假设:1)可以定义有效的基因子网络得分函数,以便高分与生物学意义相关;2)生物网络的统计意义在数学上是容易处理的;3)可以开发有效的计算工具来发现生物网络中具有统计意义的模式。本应用程序的目标就是解决这些问题。此外,研究人员还将开发实施这些计划所需的软件。作为一个实际应用,为了了解涉及衰老的分子网络,这些算法将被实施来分析大量与衰老相关的基因表达数据集。研究人员将通过以下具体目标实现所有这些目标:1)为网络模块定义新的评分函数,同时考虑节点度(节点的链接数)和边传递性(形成三角形的链接之间的相关性);并开发高效的计算算法来识别高分数的分子模块;2)开发严格的理论来评估已识别的分子模块的统计意义;以及3)应用完全开发的工具来分析大量与衰老相关的数据集,并在酵母中对预测的子集进行实验测试。大量的网络、其规模和复杂性共同构成了一个特别具有挑战性的项目。这项研究的结果对大规模网络分析非常有用,因此对生物学的系统理解也非常有用。公共卫生相关性:在生物医学研究中,识别与疾病或药物治疗相关的遗传子网络是一个重要的挑战性问题。在这一应用程序中开发的用于分析多个网络的统计和计算工具将对这项工作至关重要。这些工具将被用来识别特定于衰老的遗传网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fengzhu Sun其他文献
Fengzhu Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fengzhu Sun', 18)}}的其他基金
Molecular Sequence Analysis Using Word Counts: Statistics Power and Applications
使用字数统计的分子序列分析:统计能力和应用
- 批准号:
8096511 - 财政年份:2011
- 资助金额:
$ 16.71万 - 项目类别:
Molecular Sequence Analysis Using Word Counts: Statistics Power and Applications
使用字数统计的分子序列分析:统计能力和应用
- 批准号:
8305462 - 财政年份:2011
- 资助金额:
$ 16.71万 - 项目类别:
Computational and Statistical Studies for Multiple Molecular Networks
多分子网络的计算和统计研究
- 批准号:
7662378 - 财政年份:2008
- 资助金额:
$ 16.71万 - 项目类别:
Implications of haplotype structure in the human genome
人类基因组中单倍型结构的意义
- 批准号:
7285280 - 财政年份:2003
- 资助金额:
$ 16.71万 - 项目类别:
STATISTICAL STUDIES OF MTDNA INVOLVEMENT IN DISEASES
MTDNA 参与疾病的统计研究
- 批准号:
6138068 - 财政年份:1998
- 资助金额:
$ 16.71万 - 项目类别:
STATISTICAL STUDIES OF MTDNA INVOLVEMENT IN DISEASES
MTDNA 参与疾病的统计研究
- 批准号:
2856831 - 财政年份:1998
- 资助金额:
$ 16.71万 - 项目类别:
STATISTICAL STUDIES OF MTDNA INVOLVEMENT IN DISEASES
MTDNA 参与疾病的统计研究
- 批准号:
2451881 - 财政年份:1998
- 资助金额:
$ 16.71万 - 项目类别:
STATISTICAL STUDIES OF MTDNA INVOLVEMENT IN DISEASES
MTDNA 参与疾病的统计研究
- 批准号:
6489701 - 财政年份:1998
- 资助金额:
$ 16.71万 - 项目类别:
STATISTICAL STUDIES OF MTDNA INVOLVEMENT IN DISEASES
MTDNA 参与疾病的统计研究
- 批准号:
6342509 - 财政年份:1998
- 资助金额:
$ 16.71万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 16.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)