fMRI Detection by Clustering Model Fitting Parameters
通过聚类模型拟合参数进行fMRI检测
基本信息
- 批准号:7465350
- 负责人:
- 金额:$ 7.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementCommunitiesDataData AnalysesDetectionDevelopmentDiseaseEvaluationEventExhibitsFunctional Magnetic Resonance ImagingFutureGroupingImageIndividualInvestigationKnowledgeMagnetic Resonance ImagingModelingNoisePositioning AttributeProbabilityProceduresSeriesStimulusStructureTimeVariantbaseblood oxygen level dependenthemodynamicsimprovedinterestneurophysiologynovelresearch studyresponsetool
项目摘要
DESCRIPTION (provided by applicant): The project proposed herein will develop a flexible analytical framework for functional magnetic resonance imaging (fMRI) data that will identify multi-voxel regions of activation through statistical evaluation of hemodynamic response model fits to the observed blood-oxygenation level-dependent effect responses. The proposed framework will allow the incorporation of multiple hemodynamic response models that may be used to evaluate fMRI responses both on a single-trial and averaged (blocked) basis. In addition to an expected improvement in the identification of "true" fMRI activation, this framework is expected to be capable of reducing the background noise level in summary images by breaking from the tradition of analyzing each individual voxel for its statistical significance and subsequently grouping "significant" voxels into regions of activation. Finally, this framework will also allow us to identify regions that are co-activated, or at least exhibit similar temporal structure in response to the stimulation, independent of the amplitude of the individual responses, thus contributing a new tool to studies of functional connectivity. Aim: Develop a novel framework for fMRI data analysis that uses a priori knowledge of both the experimental paradigm and hemodynamic response to detect activation on a regional basis. Achievement of the specific aim of this proposal will provide a powerful tool that may greatly enhance the future results obtained by the functional MRI community. Development of an analytical procedure that focuses on (potentially disjoint) multi-voxel regions of interest as the fundamental activation unit to be detected will increase the probability of a detected voxel being a true detection, enhancing the usefulness of fMRI in furthering our understanding of both normal and disordered cortical activity.
描述(由申请人提供):本文提出的项目将为功能磁共振成像(FMRI)数据开发一个灵活的分析框架,该框架将通过对符合观察到的血氧水平依赖效应反应的血流动力学响应模型的统计评估来识别多体素激活区域。建议的框架将允许合并多个血流动力学反应模型,这些模型可用于在单次试验和平均(阻断)基础上评估功能磁共振反应。除了在识别“真正的”fMRI激活方面的预期改进之外,该框架有望通过打破分析每个单独的体素的统计意义并随后将“重要的”体素分组为激活区域的传统,来降低汇总图像中的背景噪声水平。最后,这个框架还将使我们能够识别共同激活的区域,或者至少显示出与刺激反应类似的时间结构,而不依赖于单个反应的幅度,从而为功能连接的研究贡献了一个新的工具。目的:开发一种新的fMRI数据分析框架,该框架使用实验范式和血流动力学响应的先验知识来检测区域激活。这项提议的具体目标的实现将提供一个强大的工具,可以极大地提高功能磁共振学界未来取得的成果。开发一种分析程序,将重点放在(可能不相交的)感兴趣多体素区域作为要检测的基本激活单元,将增加检测到的体素是真正检测到的可能性,增强功能磁共振成像在进一步了解正常和无序皮质活动方面的有用性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of combining field strengths on auditory functional MRI group analysis: 1.5T and 3T.
- DOI:10.1002/jmri.22823
- 发表时间:2011-12
- 期刊:
- 影响因子:4.4
- 作者:Han, Kihwan;Talavage, Thomas M.
- 通讯作者:Talavage, Thomas M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS M TALAVAGE其他文献
THOMAS M TALAVAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS M TALAVAGE', 18)}}的其他基金
fMRI Detection by Clustering Model Fitting Parameters
通过聚类模型拟合参数进行fMRI检测
- 批准号:
7304874 - 财政年份:2007
- 资助金额:
$ 7.11万 - 项目类别:
Systematic Artifact Reduction in Auditory fMRI
听觉 fMRI 中的系统伪影减少
- 批准号:
7344721 - 财政年份:2006
- 资助金额:
$ 7.11万 - 项目类别:
Systematic Artifact Reduction in Auditory fMRI
听觉 fMRI 中的系统伪影减少
- 批准号:
7172285 - 财政年份:2006
- 资助金额:
$ 7.11万 - 项目类别:
Systematic Artifact Reduction in Auditory fMRI
听觉 fMRI 中的系统伪影减少
- 批准号:
7568181 - 财政年份:2006
- 资助金额:
$ 7.11万 - 项目类别:
Systematic Artifact Reduction in Auditory fMRI
听觉 fMRI 中的系统伪影减少
- 批准号:
7371681 - 财政年份:2006
- 资助金额:
$ 7.11万 - 项目类别:
Systematic Artifact Reduction in Auditory fMRI
听觉 fMRI 中的系统伪影减少
- 批准号:
7034120 - 财政年份:2006
- 资助金额:
$ 7.11万 - 项目类别:
fMRI-Compatible Hand Controller for Subject Interaction
用于受试者交互的兼容 fMRI 的手持控制器
- 批准号:
6466374 - 财政年份:2002
- 资助金额:
$ 7.11万 - 项目类别:
相似海外基金
Growing Prosperity through Financial Inclusion: “FinBridge” - Fintech Data to Bridge the Trust-Gap between Mainstream Financial Service Providers and Diaspora Communities in the UK and other Financially Underserved Minorities
通过金融包容性促进繁荣:“FinBridge” - 金融科技数据弥合主流金融服务提供商与英国侨民社区和其他金融服务不足的少数群体之间的信任差距
- 批准号:
10095550 - 财政年份:2024
- 资助金额:
$ 7.11万 - 项目类别:
Collaborative R&D
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
- 批准号:
2420945 - 财政年份:2024
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Using Cell-Phone Records to Study Societal Dynamics
合作研究:HNDS-I。
- 批准号:
2218791 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316400 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Cooperative Agreement
Data/Culture. Building sustainable communities around Arts and Humanities datasets and software
数据/文化。
- 批准号:
AH/Y00745X/1 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Implementation: Small: Train the Trainers as Next Generation Leaders in Data Science for Cybersecurity for Underrepresented Communities
协作研究:网络培训:实施:小型:将培训师培训为代表性不足社区网络安全数据科学的下一代领导者
- 批准号:
2321111 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316402 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316401 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Cooperative Agreement
Collaborative Research: CyberTraining: Implementation: Small: Train the Trainers as Next Generation Leaders in Data Science for Cybersecurity for Underrepresented Communities
协作研究:网络培训:实施:小型:将培训师培训为代表性不足社区网络安全数据科学的下一代领导者
- 批准号:
2321112 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Data-driven mathematical infrastructure for inclusive communities
包容性社区的数据驱动数学基础设施
- 批准号:
23H03502 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




