Enhancement of MS signal processing toward improved cancer biomarker discovery

增强 MS 信号处理以改善癌症生物标志物的发现

基本信息

  • 批准号:
    7488479
  • 负责人:
  • 金额:
    $ 46.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-29 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The comprehensive and quantitative analysis of clinical proteomic samples is an outstanding challenge in biomedical research. New proteomic technologies for cancer detection are urgently needed and hold great potential for improving human health, as underscored by the improved survival rates of patients diagnosed in he early stages of cancer. To this end, we will develop computational tools aimed at increasing the effectiveness of cancer biomarker discovery from label-free MALDI-TOF (matrix-assisted laser- desorption/ionization time-of-flight) mass spectra for verification and identification. The computational algorithms and tools will result in more than an order of magnitude increase in both sensitivity and selectivity For molecular biomarker screening. Specifically, we propose: (i) to optimize signal processing resulting in at east a 4-fold enhancement of sensitivity (as measured by signal-to-noise), 2-fold gain in selectivity (resolution), and 10-fold increase in mass accuracy (Aim 1); (ii) to automate detection of ionization satellite ons followed by mass recalibration (Aim 2) resulting in tripling selectivity and mass accuracy; (iii) to deconvolve intensity distributions from satellite ions into parent protein peaks (Aim 3) resulting in tripling sensitivity for statistical detection and experimental identification of biomarkers from enhanced molecular maps (Aim 4). The increased efficiency of broad mass range screening will decrease the time and cost of the downstream identification and validation experiments. The successful completion of the studies described in this application will provide a basis for expanding these computational tools to other TOP MS platforms, and advance the endeavor of characterizing molecular basis for cancer toward better prognosis and treatment strategies.
描述(由申请人提供): 临床蛋白质组学样品的全面定量分析是生物医学研究中的一个突出挑战。用于癌症检测的新蛋白质组学技术是迫切需要的,并且具有改善人类健康的巨大潜力,正如在癌症早期诊断的患者的存活率提高所强调的那样。为此,我们将开发计算工具,旨在提高从无标记MALDI-TOF(基质辅助激光解吸/电离飞行时间)质谱中发现癌症生物标志物的有效性,以进行验证和鉴定。计算算法和工具将导致分子生物标志物筛选的灵敏度和选择性增加一个数量级以上。具体而言,我们建议:(i)优化信号处理,使灵敏度至少提高4倍(通过信噪比测量),选择性提高2倍(ii)自动化检测电离卫星离子,然后进行质量重新校准(目标2),从而使选择性和质量准确度提高三倍;(iii)将来自卫星离子的强度分布解卷积成亲本蛋白质峰(目标3),从而使来自增强的分子图谱的生物标志物的统计检测和实验鉴定的灵敏度提高三倍(目标4)。宽质量范围筛选效率的提高将减少下游鉴定和验证实验的时间和成本。本申请中描述的研究的成功完成将为将这些计算工具扩展到其他TOP MS平台提供基础,并将表征癌症分子基础的奋进推向更好的预后和治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dariya I. Malyarenko其他文献

Test-retest repeatability of ADC in prostate using the multi emb/em-Value VERDICT acquisition
使用多 emb/em 值判决采集技术在前列腺中 ADC 的重测重复性
  • DOI:
    10.1016/j.ejrad.2023.110782
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Harriet J. Rogers;Saurabh Singh;Anna Barnes;Nancy A. Obuchowski;Daniel J. Margolis;Dariya I. Malyarenko;Thomas L. Chenevert;Amita Shukla-Dave;Michael A. Boss;Shonit Punwani
  • 通讯作者:
    Shonit Punwani

Dariya I. Malyarenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dariya I. Malyarenko', 18)}}的其他基金

Correction of Diffusion Gradient Bias in Quantitative Diffusivity Metrics for MultiPlatform Clinical Oncology Trials
多平台临床肿瘤学试验定量扩散率指标中扩散梯度偏差的校正
  • 批准号:
    10664979
  • 财政年份:
    2015
  • 资助金额:
    $ 46.12万
  • 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
  • 批准号:
    7291560
  • 财政年份:
    2006
  • 资助金额:
    $ 46.12万
  • 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
  • 批准号:
    7923478
  • 财政年份:
    2006
  • 资助金额:
    $ 46.12万
  • 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
  • 批准号:
    7224566
  • 财政年份:
    2006
  • 资助金额:
    $ 46.12万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了