Correction of Diffusion Gradient Bias in Quantitative Diffusivity Metrics for MultiPlatform Clinical Oncology Trials
多平台临床肿瘤学试验定量扩散率指标中扩散梯度偏差的校正
基本信息
- 批准号:10664979
- 负责人:
- 金额:$ 63.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-10 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAgreementAmerican College of Radiology Imaging NetworkBenchmarkingBiologicalBone MarrowBreastCaliforniaCancer DetectionCancer PatientClinicalClinical ManagementClinical TrialsClinical Trials Cooperative GroupCollaborationsComplexDataDetectionDevelopmentDiagnosisDiagnosticDiffusionEarly treatmentEngineeringEnsureGenerationsGoalsHead and neck structureImageImaging technologyIndustrializationInstitutionLeftLesionMagnetic Resonance ImagingMalignant NeoplasmsMapsMemorial Sloan-Kettering Cancer CenterMichiganModelingMonitorMulti-Institutional Clinical TrialOncologyOrganOutputParentsPathologyPatientsPerformancePrediction of Response to TherapyProceduresProtocols documentationRadiationRadiology SpecialtyReproducibilityResearchResearch PersonnelRouteSan FranciscoScanningScientistSiteSourceStandardizationSystemSystematic BiasTechnologyTestingTherapeuticTissue ModelTissuesTranslationsUniversitiesVariantVendorWashingtoncancer biomarkerscancer clinical trialcancer imagingclinical applicationclinical decision-makingclinical imagingcohortcostdesignflexibilityimage registrationimaging capabilitiesimaging facilitiesimaging platformimprovedindustry partnermalignant breast neoplasmmanufactureoncology trialparent projectprognosticprospectiveprototypepublic health relevancequantitative imagingsuccesstooltranslational cancer researchtranslational oncologytreatment responsetumor
项目摘要
Abstract
Multi-center clinical trials increasingly utilize quantitative diffusion imaging (DWI) to aid in patient management
and treatment response assessment for translational oncology applications. A major source of systematic bias
in diffusion was discovered originating from platform-dependent gradient hardware. Left uncorrected, these
biases confound quantitative diffusion metrics used for characterization of tissue pathology and treatment
response leading to inconclusive findings, and increasing the requisite subject numbers and trial cost. Technical
remedy was defined by University of Michigan investigators and motivated our parent AIP involving the three
dominant MRI manufactures. The current AIP merged expertise among commercial scientists/engineers and
academic researchers, and resulted in successful design and development of prototype correction tools to
eliminate systematic diffusion weighting bias in quantitative DWI applications across diverse clinical MRI
platforms. As a result, two vendors have implemented prototype tools on their respective scanner platforms for
correction of mean tissue diffusivity metric widely used in oncology trials. Furthermore, feasibility of retrospective
correction across all three vendor platforms was demonstrated for the repeatability cohort of ACRIN 6698 breast
cancer imaging trial. Our AIP participation with clinical trial cooperative groups and quantitative imaging
consortia revealed that the most efficient route for adoption of developed technology on clinical platforms is by
vendor implementation. Additional need was noted for flexible integration with advanced acquisition protocols
and analyses using multiple b-values to accurately quantify complex metrics beyond mean diffusivity. To address
these needs, the renewal AIP will extend our collaborations to include two additional academic cancer imaging
centers to integrate and validate developed practical correction tools in five active clinical oncology trials, as well
as enable application to advanced tissue diffusivity models. These tools will eliminate systematic cross-platform,
cross-exam variability to facilitate longitudinal and multi-institutional translational cancer research that utilize
quantitative diffusivity metrics. Success of this project will further enhance accuracy and precision of cancer
detection and monitoring. These goals will be achieved through Aim1: deployment of DWI bias correction tools
for application in multiple cancer imaging trials, and through Aim2: correction integration with advanced DWI
protocols and tissue models.
Academic team of the proposed partnership consists of recognized experts in quantitative diffusion imaging
standardization and translation to clinical oncology trials. The PI institution has active research agreements with
three dominant clinical MRI manufactures with prior record of successful implementations for the developed
technologies. Accomplishment of the project goals will eliminate significant instrumental bias that confounds
current multi-center/multi-platform clinical trials that employ quantitative DWI.
摘要
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses?
- DOI:10.1007/s00256-013-1703-7
- 发表时间:2013-11-01
- 期刊:
- 影响因子:2.1
- 作者:Subhawong, Ty K.;Durand, Daniel J.;Fayad, Laura M.
- 通讯作者:Fayad, Laura M.
Distortion correction in diffusion-weighted imaging of the breast: Performance assessment of prospective, retrospective, and combined (prospective + retrospective) approaches.
- DOI:10.1002/mrm.26328
- 发表时间:2017-07
- 期刊:
- 影响因子:3.3
- 作者:Hancu I;Lee SK;Hulsey K;Lenkinski R;Holland D;Sperl JI;Tan ET
- 通讯作者:Tan ET
Multiparametric Whole-body MRI with Diffusion-weighted Imaging and ADC Mapping for the Identification of Visceral and Osseous Metastases From Solid Tumors.
- DOI:10.1016/j.acra.2018.02.010
- 发表时间:2018-11
- 期刊:
- 影响因子:4.8
- 作者:Jacobs MA;Macura KJ;Zaheer A;Antonarakis ES;Stearns V;Wolff AC;Feiweier T;Kamel IR;Wahl RL;Pan L
- 通讯作者:Pan L
Empirical validation of gradient field models for an accurate ADC measured on clinical 3T MR systems in body oncologic applications.
- DOI:10.1016/j.ejmp.2021.05.030
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Pang Y;Malyarenko DI;Amouzandeh G;Barberi E;Cole M;Vom Endt A;Peeters J;Tan ET;Chenevert TL
- 通讯作者:Chenevert TL
Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics.
- DOI:10.1016/j.ijrobp.2018.05.041
- 发表时间:2018-11-15
- 期刊:
- 影响因子:0
- 作者:Peng L;Parekh V;Huang P;Lin DD;Sheikh K;Baker B;Kirschbaum T;Silvestri F;Son J;Robinson A;Huang E;Ames H;Grimm J;Chen L;Shen C;Soike M;McTyre E;Redmond K;Lim M;Lee J;Jacobs MA;Kleinberg L
- 通讯作者:Kleinberg L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dariya I. Malyarenko其他文献
Test-retest repeatability of ADC in prostate using the multi emb/em-Value VERDICT acquisition
使用多 emb/em 值判决采集技术在前列腺中 ADC 的重测重复性
- DOI:
10.1016/j.ejrad.2023.110782 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:3.300
- 作者:
Harriet J. Rogers;Saurabh Singh;Anna Barnes;Nancy A. Obuchowski;Daniel J. Margolis;Dariya I. Malyarenko;Thomas L. Chenevert;Amita Shukla-Dave;Michael A. Boss;Shonit Punwani - 通讯作者:
Shonit Punwani
Dariya I. Malyarenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dariya I. Malyarenko', 18)}}的其他基金
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7291560 - 财政年份:2006
- 资助金额:
$ 63.67万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7923478 - 财政年份:2006
- 资助金额:
$ 63.67万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7488479 - 财政年份:2006
- 资助金额:
$ 63.67万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7224566 - 财政年份:2006
- 资助金额:
$ 63.67万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 63.67万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 63.67万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 63.67万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 63.67万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 63.67万 - 项目类别:
Standard Grant














{{item.name}}会员




