Molecular Predictive Testing in Ocular Melanoma

眼部黑色素瘤的分子预测测试

基本信息

  • 批准号:
    7467990
  • 负责人:
  • 金额:
    $ 20.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Most cancer deaths are caused by metastasis to distant organs, and treatment is usually ineffective if withheld until metastasis is clinically detectable. Fortunately, recent work in several cancers has shown that molecular information obtained from the primary tumor can predict metastatic risk, thereby permitting prophylactic treatment of high-risk patients at an early stage of metastasis. Ocular melanoma provides an ideal model for developing and validating such a preemptive strategy. Up to 50% of ocular melanoma patients die of metastasis despite successful treatment of the primary eye tumor, indicating that most patients who die of metastasis have microscopic, undetectable metastatic disease prior to ocular treatment. Metastatic disease usually goes undetected for 2-5 years after diagnosis and treatment of the primary ocular tumor, which allows the metastatic tumor cells to undergo up to 30 doublings, resulting in a large tumor burden of genetically deregulated cells that are highly resistant to treatment. Consequently, by the time metastatic disease is detected, death inexorably occurs within 5-7 months. Ocular melanoma cells are likely to be sensitive to many new molecular therapies, if treatment could be instituted earlier in the metastatic process. These observations suggest that early identification of high-risk patients and prophylactic treatment for presumptive metastatic disease may improve survival. Unfortunately, there are currently no biomarkers for ocular melanoma that are sufficiently accurate and/or practical to identify high-risk patients. To address this deficiency, we developed a gene expression profile that identifies high-risk patients with far greater accuracy than previous prognostic indicators. Conversion of this RNA-based assay to an immunohistochemical (IHC) platform is critical for continued development of this discovery. An IHC platform would be practical for routine clinical use, and it would allow the assay to be validated using archival tumors. Here, we propose experiments to identify and validate lead IHC markers in two independent tumor sets, then to evaluate the predictive accuracy of the IHC-based assay in a large patient cohort from the Collaborative Ocular Melanoma Study. These studies are likely to impact patient care by identifying high-risk patients, providing a framework for testing prophylactic therapies, revealing new therapeutic targets and offering new mechanistic insights into cancer progression.
描述(由申请人提供):大多数癌症死亡是由远处器官转移引起的,如果在临床可检测到转移之前停止治疗,通常是无效的。幸运的是,最近对几种癌症的研究表明,从原发肿瘤获得的分子信息可以预测转移风险,从而可以在转移的早期阶段对高风险患者进行预防性治疗。眼部黑色素瘤为开发和验证这种先发性策略提供了理想的模型。尽管原发性眼部肿瘤得到了成功治疗,但仍有高达 50% 的眼部黑色素瘤患者死于转移,这表明大多数死于转移的患者在眼部治疗前就患有微小的、无法检测到的转移性疾病。转移性疾病通常在原发性眼部肿瘤诊断和治疗后 2-5 年内未被发现,这使得转移性肿瘤细胞经历多达 30 次倍增,导致对治疗高度耐药的基因失调细胞的巨大肿瘤负担。因此,当检测到转移性疾病时,死亡将不可避免地在 5-7 个月内发生。如果可以在转移过程的早期开始治疗,那么眼部黑色素瘤细胞可能对许多新的分子疗法敏感。这些观察结果表明,早期识别高危患者并对假定的转移性疾病进行预防性治疗可能会提高生存率。不幸的是,目前还没有足够准确和/或实用的眼部黑色素瘤生物标志物来识别高风险患者。为了解决这一缺陷,我们开发了一种基因表达谱,可以比以前的预后指标更准确地识别高危患者。将这种基于 RNA 的检测方法转换为免疫组织化学 (IHC) 平台对于这一发现的持续发展至关重要。 IHC 平台对于常规临床应用来说是实用的,并且可以使用档案肿瘤来验证检测方法。在这里,我们提出实验来识别和验证两个独立肿瘤组中的主要 IHC 标记物,然后评估基于 IHC 的检测在眼部黑色素瘤合作研究的大型患者队列中的预测准确性。这些研究可能会通过识别高危患者、提供测试预防性疗法的框架、揭示新的治疗靶点以及提供有关癌症进展的新机制见解来影响患者护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES WILLIAM HARBOUR其他文献

JAMES WILLIAM HARBOUR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES WILLIAM HARBOUR', 18)}}的其他基金

Characterization and targeting of the epigenetic state underlying uveal melanoma liver metastasis
葡萄膜黑色素瘤肝转移表观遗传状态的表征和靶向
  • 批准号:
    10298599
  • 财政年份:
    2021
  • 资助金额:
    $ 20.89万
  • 项目类别:
Characterization and targeting of the epigenetic state underlying uveal melanoma liver metastasis
葡萄膜黑色素瘤肝转移表观遗传状态的表征和靶向
  • 批准号:
    10675515
  • 财政年份:
    2021
  • 资助金额:
    $ 20.89万
  • 项目类别:
Diversity Supplement for Molecular Predictive Testing in Ocular Melanoma
眼部黑色素瘤分子预测测试的多样性补充
  • 批准号:
    10220448
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
3-Dimensional Retinal Organoid Platform for the Study of Retinoblastoma
用于视网膜母细胞瘤研究的 3 维视网膜类器官平台
  • 批准号:
    10447198
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
3-Dimensional Retinal Organoid Platform for the Study of Retinoblastoma
用于视网膜母细胞瘤研究的 3 维视网膜类器官平台
  • 批准号:
    10657628
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
3-Dimensional Retinal Organoid Platform for the Study of Retinoblastoma
用于视网膜母细胞瘤研究的 3 维视网膜类器官平台
  • 批准号:
    10263901
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
MOLECULAR PREDICTIVE TESTING IN OCULAR MELANOMA
眼部黑色素瘤的分子预测测试
  • 批准号:
    7953938
  • 财政年份:
    2009
  • 资助金额:
    $ 20.89万
  • 项目类别:
MOLECULAR PREDICTIVE TESTING IN OCULAR MELANOMA
眼部黑色素瘤的分子预测测试
  • 批准号:
    7721521
  • 财政年份:
    2008
  • 资助金额:
    $ 20.89万
  • 项目类别:
Molecular Predictive Testing in Ocular Melanoma
眼部黑色素瘤的分子预测测试
  • 批准号:
    7250878
  • 财政年份:
    2006
  • 资助金额:
    $ 20.89万
  • 项目类别:
Molecular Predictive Testing in Ocular Melanoma
眼部黑色素瘤的分子预测测试
  • 批准号:
    9902342
  • 财政年份:
    2006
  • 资助金额:
    $ 20.89万
  • 项目类别:

相似海外基金

Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
  • 批准号:
    520728-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
    University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10368760
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10669539
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9570142
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9915803
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
  • 批准号:
    10259999
  • 财政年份:
    2017
  • 资助金额:
    $ 20.89万
  • 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
  • 批准号:
    21580130
  • 财政年份:
    2009
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了