Visualization of Multi-Resolution Reconstructions Using Interactive Stereoscopy
使用交互式立体视觉进行多分辨率重建的可视化
基本信息
- 批准号:7495124
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-10 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsClinicClinicalClinical DataClipComputer GraphicsComputer SimulationComputer softwareComputersDataDepthDetectionDevelopmentDevicesDiscipline of Nuclear MedicineFeedbackGoalsHumanImageImage AnalysisImageryLesionLightingLocationMedical ImagingMethodsModelingMotivationNumbersOpticsPerformancePhysiciansPositioning AttributePositron-Emission TomographyQualitative EvaluationsReceiver Operating CharacteristicsResolutionRetinal ConeScanningSensitivity and SpecificitySliceStandards of Weights and MeasuresTechniquesThree-Dimensional ImageThree-Dimensional ImagingValidationWorkattenuationbaseclinical Diagnosisdesignimage reconstructionimage visualizationimprovedmultidisciplinarynovelreconstructionsizestereoscopictomographytool
项目摘要
Historically, nuclear medicine imaging has been done using 2D views. With the advent of
computers and tomography, 3D images were acquired and stored in regular arrays of
voxels. Although a logical extension from 2D, representation of a 3D object as a stack of
2D images may not be optimal for lesion detection. This is because voxels with
rectangular geometry do not accurately approximate the geometry of the imaged
objects. This mismatch is especially significant for nuclear medicine studies where
degrading physical factors force the images to be reconstructed on grids that consist of
large cubic voxels. Considering that the lesions are small and may be comparable in
size to voxels, the inadequacy of cubic voxel approach becomes evident. Our hypothesis
is that by using the multi-resolution image representation proposed in this work, the
images can be reconstructed and presented more accurately and efficiently than using
the regular grids, thus resulting in lesion detection improvement using FDG-PET. We
chose to represent the image as a set of points in space (point cloud) with unrestricted
locations and intensities assigned to each point (node) with volume represented by a set
of non-overlapping tetrahedrons defined by the nodes. The selection of this
representation was dictated by two factors. First, each image will have its own grid that
will be designed to accurately and efficiently represent each image. By using
unrestricted node positions, a geometry with arbitrary local resolution that varies across
the image volume can be modeled. Second, the tetrahedral geometry of the image will
take advantage of recent revolutionary progress in computer graphics hardware in order
to use advanced visualization techniques for stereoscopic interactive 3D visualization of
the imaging data. The work proposed here will create a framework for voxel-less multi-
resolution representation of the image in nuclear medicine. It includes multidisciplinary
development of the tomographic reconstruction and stereoscopic visualization methods
using medical imaging and computer graphics. The work involves design and creation of
software for reconstruction and stereoscopic display of tetrahedron based images and
evaluation against human observers for the lesion detection task.
从历史上看,核医学成像已经使用2D视图完成。的到来
计算机和断层扫描,3D图像被采集并存储在规则的阵列中,
体素虽然是2D的逻辑扩展,但将3D对象表示为
2D图像可能不是病变检测的最佳选择。这是因为具有
矩形几何形状不能精确地近似成像的几何形状
对象这种不匹配对于核医学研究尤其重要,
退化的物理因素迫使图像在网格上重建,
大立方体体素。考虑到病变较小,
尺寸到体素,立方体素方法的不足变得明显。我们的假设
通过使用本工作中提出的多分辨率图像表示,
图像可以被重建和呈现得比使用
规则的网格,从而导致使用FDG-PET的病变检测的改进。我们
选择将图像表示为空间中的一组点(点云),
分配给每个点(节点)的位置和强度,其中体积由集合表示
由节点定义的不重叠的四面体。选择该
代表性取决于两个因素。首先,每个图像都有自己的网格,
将被设计为准确和有效地表示每个图像。通过使用
不受限制的节点位置,具有任意局部分辨率的几何形状,
可以对图像体积进行建模。第二,图像的四面体几何形状将
利用计算机图形硬件的最新革命性进展,
使用先进的可视化技术进行立体交互式三维可视化,
成像数据。这里提出的工作将创建一个框架,无体素多,
核医学中图像的分辨率表示。它包括多学科
断层重建和立体可视化方法的发展
使用医学成像和计算机图形。这项工作涉及设计和创造
用于基于四面体图像的重建和立体显示的软件,
针对病变检测任务的人类观察者的评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARKADIUSZ SITEK其他文献
ARKADIUSZ SITEK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARKADIUSZ SITEK', 18)}}的其他基金
Single Scan Rest/Stress Cardiac PET Imaging
单次扫描静息/应激心脏 PET 成像
- 批准号:
8031624 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Single Scan Rest/Stress Cardiac PET Imaging
单次扫描静息/应激心脏 PET 成像
- 批准号:
8662867 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Single Scan Rest/Stress Cardiac PET Imaging
单次扫描静息/应激心脏 PET 成像
- 批准号:
8217286 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Visualization of Multi-Resolution Reconstructions Using Interactive Stereoscopy
使用交互式立体视觉进行多分辨率重建的可视化
- 批准号:
7313679 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
相似海外基金
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
- 批准号:
10743328 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Clinical and Economic Impact of Teleneurology vs Standard in Clinic Care for Multiple Sclerosis: A Randomized Trial
远程神经学与多发性硬化症临床护理标准的临床和经济影响:随机试验
- 批准号:
10710059 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Clinical and Economic Impact of Teleneurology vs Standard in Clinic Care for Multiple Sclerosis: A Randomized Trial
远程神经学与多发性硬化症临床护理标准的临床和经济影响:随机试验
- 批准号:
10583096 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Liver Cirrhosis Network: Clinical Research Center - Mayo Clinic
肝硬化网络:临床研究中心 - 梅奥诊所
- 批准号:
10487453 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Liver Cirrhosis Network: Clinical Research Center - Mayo Clinic
肝硬化网络:临床研究中心 - 梅奥诊所
- 批准号:
10310667 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Liver Cirrhosis Network: Clinical Research Center - Mayo Clinic
肝硬化网络:临床研究中心 - 梅奥诊所
- 批准号:
10700154 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别: