Advanced image processing software for membrane protein structure determination
用于膜蛋白结构测定的先进图像处理软件
基本信息
- 批准号:7433959
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2009-09-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomatic Data ProcessingCellsCellular biologyComputer softwareContractsData CollectionData FilesDevelopmentDrug Delivery SystemsDrug DesignElectron MicroscopeFaceHumanImageIntellectual PropertyLicensingMathematicsMembraneMembrane LipidsMembrane ProteinsMethodsPharmacologic SubstancePhasePlayPositioning AttributePreparationProcessProductionProteinsRangeRecordsResearchResolutionRoentgen RaysRoleSalesSamplingSchemeSpeedStructureSystemTestingTimeWeightWorkbasedigital imagingdrug developmentelectron crystallographyimage processingimprovedmathematical algorithmparticleprotein structurereconstitutionreconstructionsoftware systemsthree dimensional structuretooltransmission processtwo-dimensionaluser-friendly
项目摘要
DESCRIPTION (provided by applicant): We will develop a software system to improve the speed, efficiency and resolution of membrane protein structure determination. While membrane proteins comprise the majority of pharmaceutical drug targets, lack of structural information for human membrane proteins poses a roadblock for structure-based drug design. Conventional protein structure determination by X-ray or NMR methods faces serious challenges when applied to membrane proteins. Electron crystallography instead uses high-resolution electron microscopes to image two-dimensional crystals of lipid membrane-reconstituted membrane proteins. Unfortunately, even with electron crystallography the structure resolution required for drug design has met with difficulties in sample preparation and image processing. We propose to develop a new image processing system that will modernize the structure reconstruction from electron crystallography images by including several recently developed mathematical algorithms, thereby improving the resolution of the reconstructions. Our system will automate the processing, which will enable competitive processing times. And, most importantly, our new algorithms will greatly improve the efficiency of the method, by being able to process images that previously could not be used. Phase I work will prove feasibility by implementing three software extensions at command line level and demonstrating improved resolution. Phase II will further refine the mathematic modules and implement them is a user friendly GUI. This software will be the technological basis for EON Structures to enable high-throughput, high-resolution membrane protein structure determination for pharmaceutical research and structure-based drug design. Membrane proteins represent the main target for drugs currently under pharmaceutical development. Structural based drug design is one of the most powerful methods of drug development, but structures for membrane proteins have been extremely difficult to produce. We will test new methods for computer image processing which should allow us to greatly advance the speed and resolution of determining the 3D structure of membrane proteins. This project will have significant commercial impact both through direct sale and license of the new software, and by enabling our use of these tools for contract based membrane protein structure determination for pharmaceutical companies.
描述(申请人提供):我们将开发一个软件系统,以提高膜蛋白结构测定的速度、效率和分辨率。虽然膜蛋白构成了大多数药物靶点,但缺乏人膜蛋白的结构信息成为基于结构的药物设计的障碍。传统的X射线或核磁共振方法用于膜蛋白的结构测定面临着严峻的挑战。电子结晶学取而代之的是使用高分辨率电子显微镜对脂膜重组膜蛋白的二维晶体进行成像。不幸的是,即使有了电子结晶学,药物设计所需的结构分辨率在样品制备和图像处理方面也遇到了困难。我们建议开发一种新的图像处理系统,该系统将通过包括最近发展的几个数学算法来实现从电子晶体图像进行结构重建的现代化,从而提高重建的分辨率。我们的系统将自动处理,这将使处理时间具有竞争力。最重要的是,我们的新算法能够处理以前无法使用的图像,从而极大地提高了方法的效率。第一阶段的工作将通过在命令行级别实现三个软件扩展并演示改进的解决方案来证明其可行性。第二阶段将进一步完善数学模块,并将其实现为用户友好的图形用户界面。该软件将成为EON Structures的技术基础,为药物研究和基于结构的药物设计提供高通量、高分辨率的膜蛋白质结构测定。膜蛋白是目前正在开发的药物的主要靶点。基于结构的药物设计是药物开发中最有效的方法之一,但膜蛋白结构的制造一直是极其困难的。我们将测试计算机图像处理的新方法,这将使我们能够极大地提高确定膜蛋白三维结构的速度和分辨率。该项目将通过直接销售和许可新软件,并使我们能够使用这些工具为制药公司确定基于合同的膜蛋白结构,从而产生重大的商业影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Owen Hughes其他文献
Owen Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Owen Hughes', 18)}}的其他基金
SITE-SPECIFIC RECOMBINATION TOOLS FOR C ELEGANS
C 线虫的位点特异性重组工具
- 批准号:
6074306 - 财政年份:2000
- 资助金额:
$ 20.7万 - 项目类别:
ANEUGEN SCREENING IN OPTIMIZED C. ELEGANS STRAINS
优化线虫菌株中的 ANEUGEN 筛选
- 批准号:
6147664 - 财政年份:2000
- 资助金额:
$ 20.7万 - 项目类别:
Aneugen Screening in Optimized Yeast Strains
优化酵母菌株的 Aneugen 筛选
- 批准号:
6655611 - 财政年份:1999
- 资助金额:
$ 20.7万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant