Spatially Oriented Database for Digital Brain Images

数字脑图像空间定向数据库

基本信息

  • 批准号:
    7653145
  • 负责人:
  • 金额:
    $ 49.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-09-30 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall goal of this project is the integration of advanced image-processing, data-analysis, and data-management techniques into a brain-image database (BRAID). The integration of these components has greatly aided our collaborators' management and analysis of image-based clinical trials (IBCTs) for the elucidation of structure- function associations in the human brain. In the previous cycle, we extended our segmentation algorithm to incorporate more complex spatial and multispectral signal-intensity information; extended BRAID and its image-processing pipeline to accommodate acute-stroke data; implemented our Bayesian approach to morphometry; constructed a probabilistic atlas of acute-stroke lesions; and re-implemented BRAID using open-source components, improving the user interface and performance in the process. Although these results, in conjunction with BRAID's visualization and other statistical tools, have enabled our collaborators and us to contribute to the peer-reviewed clinical and engineering literature, our experience has demonstrated the need for extensions to BRAID. First, our current data-mining approaches are designed to generate Bayesian networks that model a structure-function relationship; that is, these models are descriptive. Increasingly, clinical neuroscientists are attempting to construct predictive models, which they could apply to new subjects, or even patients, to predict group membership based on image data, or vice versa. Such predictive models could guide early therapy for Alzheimer disease or stroke, among other diseases, and thus have immense potential. Second, although our Bayesian morphometry algorithm has shown great promise for mining cross-sectional data, many morphometry studies center on degenerative diseases, and therefore require longitudinal analysis, which takes into account temporal changes as the disease progresses, or responds to therapy. Third, given the rapid advances in modality development, and based on our experience developing successful approaches to mining voxel-wise lesion and volumetric data, we believe that generalizing our Bayesian data-mining approach to accommodate arbitrary statistical and spatial models would result in a widely applicable structure-function analysis library. Fourth, the rapid expansion of modalities available to clinical neuroscientists has also led to the acquisition of large, multimodality image sets, including diffusion-tensor data, functional MR images, lesion-deficit data, and voxel-wise volumetry. Such data sets are becoming the standard for determining the pathophysiologic mechanisms of neurodegenerative disease. For example, several Alzheimer research groups are collecting fMR and structural MR data, in order to determine whether regional interactions between morphology and activation predict the development of Alzheimer disease better than either modality alone. Such researchers would benefit greatly from software that would allow them to analyze multispectral data. Finally, although our open-source reimplementation of BRAID has already greatly extended the range of statistical models available on-line to our collaborators, we could further extend BRAID's utility by augmenting this statistics datablade to support SQL- based access to all of the data-mining algorithms listed above. Toward these ends, we propose five specific aims to further extend BRAID's functionality: development of a Bayesian method for generating robust, scalable classifiers for brain-image data; implementation of a Bayesian longitudinal morphometry algorithm; development of a class library for modality-independent structure-function data mining; develop data-mining support for multimodality image data; and augmentation of BRAID's statistics datablade to integrate these data-mining algorithms, and to provide on-line access to these tools. We will test these image-analysis, segmentation, and statistical extensions to BRAID, using data from 6 IBCTs. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop software that simplifies the analysis of brain-image data. We will make all of these software components available from a web-accessible image database. We expect that, as we implement more components of this software suite, neuroscientists will find it much easier to perform complex multivariate analyses of their data relating structure and function of the human brain.
描述(由申请人提供):该项目的总体目标是将先进的图像处理,数据分析和数据管理技术集成到脑图像数据库(BRAID)中。这些组成部分的整合极大地帮助了我们的合作者对基于图像的临床试验(ibct)的管理和分析,以阐明人类大脑的结构-功能关联。在上一个周期中,我们扩展了我们的分割算法,以纳入更复杂的空间和多光谱信号强度信息;扩展了BRAID及其图像处理管道,以适应急性中风数据;实现了我们的贝叶斯形态学方法;构建急性脑卒中病变概率图谱;并使用开源组件重新实现BRAID,在此过程中改进了用户界面和性能。虽然这些结果与BRAID的可视化和其他统计工具相结合,使我们的合作者和我们能够为同行评议的临床和工程文献做出贡献,但我们的经验表明需要扩展BRAID。首先,我们目前的数据挖掘方法被设计成生成贝叶斯网络,对结构-功能关系进行建模;也就是说,这些模型是描述性的。越来越多的临床神经科学家正在尝试构建预测模型,他们可以将其应用于新的受试者,甚至患者,以基于图像数据预测群体成员,反之亦然。这种预测模型可以指导阿尔茨海默病或中风等疾病的早期治疗,因此具有巨大的潜力。其次,尽管我们的贝叶斯形态学算法在挖掘横断面数据方面显示出巨大的前景,但许多形态学研究都集中在退行性疾病上,因此需要纵向分析,考虑到疾病进展或对治疗的反应时的时间变化。第三,鉴于模态发展的快速发展,并基于我们开发成功的体素损伤和体积数据挖掘方法的经验,我们相信推广我们的贝叶斯数据挖掘方法以适应任意统计和空间模型将导致广泛适用的结构-功能分析库。第四,临床神经科学家可以使用的模式的快速扩展也导致了大型、多模式图像集的获取,包括扩散张量数据、功能磁共振图像、病变缺陷数据和体素体积测量。这些数据集正在成为确定神经退行性疾病病理生理机制的标准。例如,几个阿尔茨海默病研究小组正在收集功能磁共振和结构磁共振数据,以确定形态和激活之间的区域相互作用是否比单独的任何一种模式更好地预测阿尔茨海默病的发展。这类研究人员将从能够分析多光谱数据的软件中受益匪浅。最后,尽管我们对BRAID的开源重新实现已经极大地扩展了我们的合作者可以在线使用的统计模型的范围,但是我们可以进一步扩展BRAID的实用程序,通过增加这个统计数据库来支持对上面列出的所有数据挖掘算法的基于SQL的访问。为了实现这些目标,我们提出了五个具体目标来进一步扩展BRAID的功能:开发贝叶斯方法来生成鲁棒的、可扩展的脑图像数据分类器;贝叶斯纵向形态测量算法的实现;模态无关结构函数数据挖掘类库的开发开发对多模态图像数据的数据挖掘支持;扩大BRAID的统计数据库,整合这些数据挖掘算法,并提供对这些工具的在线访问。我们将使用来自6个ibct的数据来测试这些图像分析、分割和BRAID的统计扩展。公共卫生相关性:该项目的目标是开发简化脑图像数据分析的软件。我们将使所有这些软件组件可从网络访问的图像数据库。我们期望,随着我们实现该软件套件的更多组件,神经科学家将发现对与人类大脑结构和功能相关的数据进行复杂的多元分析变得更加容易。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward H Herskovits其他文献

Edward H Herskovits的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward H Herskovits', 18)}}的其他基金

SPATIALLY ORIENTED DATABASE FOR DIGITAL BRAIN IMAGES
数字脑图像的空间导向数据库
  • 批准号:
    2442325
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    8693082
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    7110176
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
SPATIALLY ORIENTED DATABASE FOR DIGITAL BRAIN IMAGES
数字脑图像的空间导向数据库
  • 批准号:
    2904300
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
SPATIALLY ORIENTED DATABASE FOR DIGITAL BRAIN IMAGES
数字脑图像的空间导向数据库
  • 批准号:
    6168824
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
SPATIALLY ORIENTED DATABASE FOR DIGITAL BRAIN IMAGES
数字脑图像的空间导向数据库
  • 批准号:
    6678264
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    6929350
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    6791451
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    7915632
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:
Spatially Oriented Database for Digital Brain Images
数字脑图像空间定向数据库
  • 批准号:
    6611912
  • 财政年份:
    1995
  • 资助金额:
    $ 49.82万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了